一個(gè)正三角形的外接圓半徑為4cm,則這個(gè)內(nèi)接正三角形的面積為_(kāi)_______.

12
分析:作出正三角形的邊心距,連接正三角形的一個(gè)頂點(diǎn)和中心可得到一直角三角形,解直角三角形即可.
解答:在中心的直角三角形的角為360°÷3÷2=60°,
∴邊長(zhǎng)的一半為2,邊心距=2,
∴這個(gè)內(nèi)接正三角形的面積為×4×2×3=12
點(diǎn)評(píng):解正多邊形和圓的問(wèn)題時(shí),應(yīng)連接圓心和正多邊形的頂點(diǎn),作出邊心距,得到和中心角一半有關(guān)的直角三角形進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)正三角形的外接圓半徑為4cm,則這個(gè)內(nèi)接正三角形的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱(chēng)為“接近度”.
(1)角的“接近度”定義:設(shè)正n邊形的每個(gè)內(nèi)角的度數(shù)為m°,將正n邊形的“接近度”定義為|180-m|.于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=3,則該正n邊形的“接近度”等于
 

②若n=20,則該正n邊形的“接近度”等于
 

③當(dāng)“接近度”等于
 
.  時(shí),正n邊形就成了圓.
(2)邊的“接近度”定義:設(shè)一個(gè)正n邊形的外接圓的半徑為R,正n邊形的中心到各邊的距離為d,將正n邊形的“接近度”定義為|
dR
-1|
.分別計(jì)算n=3,n=6時(shí)邊的“接近度”,并猜測(cè)當(dāng)邊的“接近度”等于多少時(shí),正n邊形就成了圓?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•武侯區(qū)一模)已知a、b、c分別是△ABC的∠A、∠B、∠C的對(duì)邊(c>b),關(guān)于x的方程x2-2(b+c)x+2bc+a2=0有兩個(gè)相等的實(shí)數(shù)根,且∠B、∠C滿(mǎn)足關(guān)系式
3
sin∠B=sin∠C
,△ABC的外接圓面積為64π.
(1)求a,b,c的長(zhǎng).
(2)若D、E、F分別為AB、BC、AC的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),PQ∥AC,且交BC于點(diǎn)Q,以PQ為一邊向點(diǎn)B的異側(cè)作正三角形PQH,設(shè)正三角形PQH與矩形EDAF的公共部分的面積為S,BP的長(zhǎng)為
3
x.直接寫(xiě)出S與x之間的關(guān)系.
(3)在(2)的情況下,當(dāng)x=4
3
時(shí),求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(長(zhǎng)山初中 謝涓涓)(解析版) 題型:填空題

一個(gè)正三角形的外接圓半徑為4cm,則這個(gè)內(nèi)接正三角形的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案