如圖,試比較∠ADC與∠BAD的大小,并說明理由

答案:
解析:

解:∠ADC>∠BAD.理由:因?yàn)椤螦DC>∠AEC,∠AEC>∠BAD,所以∠ADC>∠BAD


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,D、E是△ABC的BC邊上的點(diǎn),AD=AE,EB=DC
求證:(1)△ADC≌△AEB;
(2)試比較∠1與∠2的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在RT△ABC中,∠C=90°,且AC=CD=1,又E,D為CB的三等分點(diǎn).
(1)圖中是否存在相似三角形,若存在,找出并證明相似的三角形;若不存在,試說明理由.
(2)比較∠ADC與∠AEC+∠B的大小,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題研究
(1)如圖(1),我們已經(jīng)學(xué)習(xí)了直角三角形中的邊角關(guān)系,在Rt△ACD中,sin∠A=
 
,所以CD=
 
,而S△ABC=
1
2
AB•CD,于是可將三角形面積公式變形,得S△ABC=
 
.①其文字語言表述為:三角形的面積等于兩邊及其夾角正弦積的一半.這就是我們將要在高中學(xué)習(xí)的正弦定理.
(2)如圖(2),在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β.
∵S△ABC=S△ADC+S△BDC,由公式①,得
1
2
AC•BC•sin(α+β)=
1
2
AC•CD•sinα+
1
2
BC•CD•sinβ
,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②.
請(qǐng)你利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD,將得到新的結(jié)論.并寫出解決過程.
(3)利用(2)中的結(jié)論,試求sin75°和sin105°的值,并比較其大.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材 同步練 數(shù)學(xué) 七年級(jí)下冊(cè) 配人教版 題型:044

如圖所示,∠B=∠C,試比較∠ADC與∠AEB的大小關(guān)系

查看答案和解析>>

同步練習(xí)冊(cè)答案