如圖,正方形ABCD,E為AB上的動點,(E不與A、B重合)連接DE,作DE的中垂線,交AD于點F.
(1)若E為AB中點,則數(shù)學公式=______.
(2)若E為AB的n等分點(靠近點A),則數(shù)學公式=______.

解:(1)設正方形ABCD的邊長為m,由已知得:
AD=m,AE=m,
由直角三角形DAE,根據(jù)勾股定理得:
DE==m,
已知作DE的中垂線,交AD于點F,
∴DG=DE=m,
由已知得:直角三角形DAE∽直角三角形DGF,
=,
∴DF=m,
==
故答案為:

(2)由已知.若正方形ABCD的邊長為1,則AE=
根據(jù)勾股定理得:DE=,
DG=,
由(1)直角三角形DAE∽直角三角形DGF,
得:DF=,
=
故答案為:
分析:此題首先由勾股定理求出DE,則得出DG,再由已知得直角三角形DAE∽直角三角形DGF,繼而求出DF,從而求出
點評:此題考查的知識點是勾股定理,關鍵是先利用勾股定理求出DE,再由相似三角形求出DF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案