如圖,等腰梯形ABCD中,AB=CD,AD∥BC,點(diǎn)E、F在BC上,且BE=CF.
(1)求證:AE=DF;
(2)若AD=EF,試證明四邊形AEFD為矩形.
(1)利用等腰梯形的性質(zhì)和三角形全等的判定方法可證明△ABE≌△DCF,利用全等三角形的性質(zhì)進(jìn)而得到AE=DF;
(2)先證明△ABF≌△DCE,得打AF=DE,進(jìn)而證明四邊形AEFD為平行四邊形,再利用對角線相等的平行四邊形為矩形即可證明.
【解析】
試題分析:(1)∵四邊形ABCD是等腰梯形,
∴AB=CD,∠ABC=∠DCB.
又∵BE=CF,
∴△ABE≌△DCF.
∴AE=DF;
(2)∵BE=CF,
∴BF=CE
又∵AB=CD,∠ABC=∠DCB,
∴△ABF≌△DCE,
∴AF=DE.
又∵AD=EF,AD∥BC,
∴四邊形AEFD為平行四邊形.
∴四邊形AEFD為矩形.
考點(diǎn):全等三角形的判定和性質(zhì),等腰梯形的性質(zhì),矩形的判定方法
點(diǎn)評:本題知識點(diǎn)較多,綜合性較強(qiáng),是中考常見題,難度不大,熟練掌握全等三角形的判定和性質(zhì)是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com