如圖,已知⊙O的半徑為4,點D是直徑AB延長線上一點,DC切⊙O于點C,連接AC,若∠CAB=30°,則BD的長為( )

A.4
B.8
C.4
D.2
【答案】分析:連接OC,由切線的性質(zhì)可知∠OCD為直角,然后利用等邊對等角,由OA=OC得到∠BAC=∠OCA,再由∠CAB=30°,得到∠OCA=30°,又∠DOC為三角形AOC的外角,根據(jù)三角形外角的性質(zhì)可得∠DOC為60°,從而得到∠D為30°,在直角三角形OCD中,根據(jù)30°角所對的直角邊等于斜邊的一半,由OC的長求出OD的長,再由OD-OB即可求出BD的長.
解答:解:連接OC,如圖所示:
由CD為圓O的切線,得到OC⊥CD,
∴∠OCD=90°,
∵OA=OC,且∠CAB=30°
∴∠CAB=∠OCA=30°,
∴∠DOC=60°,
∴∠ODC=30°,
在Rt△OCD中,OC=4,則OD=8,
則BD=OD-OB=8-4=4.
故選C.
點評:此題考查了切線的性質(zhì),三角形的外角性質(zhì)以及含30°角的直角三角形的性質(zhì),遇到直線與圓相切時,常常連接圓心與切點,構(gòu)造直角三角形,利用直角三角形的性質(zhì)來解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點精英家教網(wǎng)P出發(fā),點A以5cm/s的速度沿射線PM方向運動,點B以4cm/s的速度沿射線PN方向運動.設(shè)運動時間為ts.
(1)求PQ的長;
(2)當(dāng)t為何值時,直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點D,OM⊥AB于點M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點D,OM⊥AB于點M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為( 。
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習(xí)冊答案