【題目】綜合與實踐:
如圖1,中,,于點,且;如圖2,在圖1的基礎(chǔ)上,動點從點出發(fā)以每秒的速度沿線段向點運動,同時動點從點出發(fā)以相同速度沿線段向點運動,當(dāng)其中一點到達(dá)終點時另外一點也隨之停止運動,設(shè)點運動的時間為秒.
(1)求的長;
(2)當(dāng)的其中一邊與平行時(與不重合),求的值;
(3)點在線段上運動的過程中,是否存在以為腰的是等腰三角形?若存在,求出的值;若不存在,請說明理由.
【答案】(1);(2)的值為2.5秒或3秒;(3)存在,的值為3或秒.
【解析】
(1)設(shè),,則,在Rt△ABD中利用勾股定理建立方程求出x,即可得到AB的長;
(2)分兩種情況討論:①當(dāng)時,;②當(dāng)時,,分別建立方程求解;
(3)分兩種情況討論:①當(dāng)時,易得;②當(dāng)時,過點作于點,利用等積法求出DE,再用勾股定理求出AE,進(jìn)而得到AP,用距離除以速度即可得出時間.
解:(1)設(shè),,則.
∵,
∴,
在中,,
即,
解得,
∴.
(2)由(1)可得:,,,
∵動點、以每秒的速度運動,時間為,
∴,,
①當(dāng)時,,
即,
∴;
②當(dāng)時,,
即,
∴.
∴當(dāng)的其中一邊與平行時,的值為2.5秒或3秒.
(3)存在,分兩種情況討論:
①如圖,當(dāng)時,是等腰三角形.
∴,
∴,
②如圖,當(dāng)時,是等腰三角形.
過點作于點,
在中,,
即:,
∴,
在中,.
∴,
∴.
綜上,當(dāng)的值為3或秒時,是以為腰的等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)a,b,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,-1}=-1,min{2,2}=2. 類似地,若函數(shù)y1、y2都是x的函數(shù),則y=min{y1, y2}表示函數(shù)y1和y2的“取小函數(shù)”.
(1)設(shè)y1=x,y2=,則函數(shù)y=min{x, }的圖像應(yīng)該是 中的實線部分.
(2)請在下圖中用粗實線描出函數(shù)y=min{(x-2)2, (x+2)2}的圖像,并寫出該圖像的三條不同性質(zhì):
① ;
② ;
③ ;
(3)函數(shù)y=min{(x-4)2, (x+2)2}的圖像關(guān)于 對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一只不透明的布袋中裝有紅球 3 個、黃球 1 個,這些球除顏色外都相同,均勻搖勻.
(1)從布袋中一次摸出 1 個球,計算“摸出的球恰是黃球”的概率;
(2)從布袋中一次摸出 2 個球,計算“摸出的球恰是一紅一黃”的概率(用“ 畫樹狀圖”或“列表”的方法寫出計算過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC 中 BC=a,AC=b,AB=c,記三角形 ABC 的面積為 S.
(1)求證:S=absinC;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,將三角尺的直角頂點P落在∠AOB的平分線OC的任意一點上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點E、F。證明:PE=PF。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高中招生指標(biāo)到校是我市中考招生制度改革的一項重要措施.某初級中學(xué)對該校近四年指標(biāo)到校保送生人數(shù)進(jìn)行了統(tǒng)計,制成了如下兩幅不完整的統(tǒng)計圖:
(1)該校近四年保送生人數(shù)的極差是 .請將折線統(tǒng)計圖補充完整;
(2)該校2009年指標(biāo)到校保送生中只有1位女同學(xué),學(xué)校打算從中隨機(jī)選出2位同學(xué)了解他們進(jìn)人高中階段的學(xué)習(xí)情況.請用列表法或畫樹狀圖的方法,求出所選兩位同學(xué)恰好是1位男同學(xué)和1位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCO放在平面直角坐標(biāo)系中,其中頂點B的坐標(biāo)為(5,3),E是BC邊上一點,將△ABE沿AE翻折,點B剛好與OC邊上的點D重合,過點E的反比例函數(shù)y=的圖象與邊AB交于點F,則線段AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中,用如圖所示的三角形解釋二項式的展開式中各項系數(shù)的規(guī)律,此三角形稱為“楊輝三角”根據(jù)“楊輝三角”請計算的展開式中從左起第四項的系數(shù)為( )
A.64B.20C.15D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=56.3°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的NF這層上曬太陽.
(1)求樓房的高度約為多少米?
(2)過了一會兒,當(dāng)α=45°時,問小貓能否還曬到太陽?請說明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com