精英家教網 > 初中數學 > 題目詳情

【題目】如圖,兩條寬度都為的紙條,交叉重疊放在一起,,它們的交角,則它們重疊部分(陰影部分)的面積為(

A.B.C.D.

【答案】D

【解析】

過點AAEBC,AFCD,垂足分別為E,F,證明△ABE≌△ADF,從而證明四邊形ABCD是菱形,再利用勾股定理求出BC的長,最后根據菱形的面積公式算出重疊部分的面積即可.

過點AAEBC,AFCD,垂足分別為E,F,如圖所示,

∴∠AEB=∠AFD90°,

ADCBABCD,

∴四邊形ABCD是平行四邊形,

∵紙條寬度都為3cm,

AEAF3cm

在△ABE和△ADF中,

,

∴△ABE≌△ADFAAS),

ABAD,∠BAE30°,

∴四邊形ABCD是菱形,

BCAB

,則,

RtABE中,,

解得,(負值舍去),

BCABcm

∴重疊部分(圖中陰影部分)的面積=3×cm2),

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】有一塊矩形木板,木工采用如圖的方式,在木板上截出兩個面積分別為18dm232dm2的正方形木板.

1)求剩余木料的面積.

2)如果木工想從剩余的木料中截出長為1.5dm,寬為ldm的長方形木條,最多能截出   塊這樣的木條.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.

(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為3,OP=1,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線DE經過點A

1)寫出∠B的內錯角是   ,同旁內角是   

2)若∠EAC=∠C,AC平分∠BAE,∠B44°,求∠C的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】材料一,在平面里有兩點,,若為起點,為終點,則把有方向且有長度的線段叫做向量,記為:,并且可用坐標表示這個向量,表示方法為:

,向量的長度可以表示成

例如:,

所以

材料二:若,,則

時,則

根據材料解決下列問題:

已知中,,,

1________ ___________

2)當時,求證:是直角三角形.

3)若,,求使恒成立的的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線 分別交x軸、y軸于A、B兩點,已知點C坐標為(6,0),若直線AB上存在點P,使∠OPC=90°,則m的取值范圍是。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖示,若△ABC內一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點是法國數學家和教育家克洛爾于1816年首次發(fā)現,但他的發(fā)現并未被當時的人們所注意,1875年,布洛卡點被一個數學愛好者法國軍官布洛卡重新發(fā)現,并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c+2的圖象如圖,頂點為(-1,0),下列結論:abc<0;b2-4ac=0;a>2;4a-2b+c>0.其中正確結論的個數是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于 的一元二次方程 有兩個實數根
(1)求實數 的取值范圍;
(2)當 時,求 的值.

查看答案和解析>>

同步練習冊答案