已知在梯形ABCD中,AD∥BC,∠A=90°,∠D=150°,CD=8,則AB=________.

4
分析:過D作DE∥AB交BC于E,得出四邊形ABED是矩形,推出AB=DE,∠ADE=∠DEC=∠BED=90°,求出∠C=30°,根據(jù)含30度角的直角三角形性質(zhì)求出即可.
解答:
過D作DE∥AB交BC于E,
∵AD∥BC,∠A=90°,
∴四邊形ABED是矩形,
∴AB=DE,∠ADE=∠DEC=∠BED=90°,
∵∠ADC=150°,
∴∠EDC=60°,
∴∠C=30°,
∵DC=8,
∴DE=4,
∴AB=4,
故答案為:4.
點(diǎn)評:本題考查了矩形的性質(zhì)和判定,梯形性質(zhì),含30度角的直角三角形性質(zhì)的應(yīng)用,關(guān)鍵是能把梯形轉(zhuǎn)化成矩形和直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在梯形ABCD中,AB∥DC,AD=2PD,PC=2PB,∠ADP=∠PCD,PD=PC=4,如圖1.
(1)求證:PD∥BC;
(2)若點(diǎn)Q在線段PB上運(yùn)動,與點(diǎn)P不重合,連接CQ并延長交DP的延長線于點(diǎn)O,如圖2,設(shè)PQ=x,DO=y,求y與x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)若點(diǎn)M在線段PA上運(yùn)動,與點(diǎn)P不重合,連接CM交DP于點(diǎn)N,當(dāng)△PNM是等腰三角形時,求PM的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知在梯形ABCD中,AD∥BC,AB=DC,對角線AC和BD相交于點(diǎn)O,E是BC邊上一個動點(diǎn)(E點(diǎn)不與B、C兩點(diǎn)重合),EF∥BD交AC于點(diǎn)F,EG∥AC交BD于點(diǎn)G.
(1)求證:四邊形EFOG的周長等于2 OB;
(2)請你將上述題目的條件“梯形ABCD中,AD∥BC,AB=DC”改為另一種四邊形,其他條件不變,使得結(jié)論“四邊形EFOG的周長等于2 OB”仍成立,并將改編后的題目畫出圖形,寫出已知、求證、不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在梯形ABCD中,AD∥BC,AD<BC,且BC=6,AB=DC=4,點(diǎn)E是AB的中點(diǎn).
(1)如圖,P為BC上的一點(diǎn),且BP=2.求證:△BEP∽△CPD;
(2)如果點(diǎn)P在BC邊上移動(點(diǎn)P與點(diǎn)B、C不重合),且滿足∠EPF=∠C,PF交直線CD于點(diǎn)F,同時交直線AD于點(diǎn)M,那么
①當(dāng)點(diǎn)F在線段CD的延長線上時,設(shè)BP=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域精英家教網(wǎng);
②當(dāng)S△DMF=
94
S△BEP
時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在梯形ABCD中,AB∥CD,BC⊥AB,且AD⊥BD,CD=2,sinA=
23
.求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在梯形ABCD中,AD∥BC,∠A=90°,∠D=150°,CD=8,則AB=
4
4

查看答案和解析>>

同步練習(xí)冊答案