關(guān)于x的方程||x-2|-1|=a有三個整數(shù)解,求a的值.
分析:根據(jù)絕對值的性質(zhì)可得|x-2|-1=±a,然后討論x≥2及x<2的情況下解的情況,再根據(jù)方程有三個整數(shù)解可得出a的值.
解答:解:①若|x-2|-1=a,
當x≥2時,x-2-1=a,解得:x=a+3,a≥-1;
當x<2時,2-x-1=a,解得:x=1-a;a>-1;
②若|x-2|-1=-a,
當x≥2時,x-2-1=-a,解得:x=-a+3,a≤1;
當x<2時,2-x-1=-a,解得:x=a+1,a<1;
又∵方程有三個整數(shù)解,
∴可得:a=-1或1,根據(jù)絕對值的非負性可得:a≥0.
即a只能取1.
點評:本題考查含絕對值的一元一次方程,難度較大,掌握絕對值的性質(zhì)及不等式的解集的求法是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

若關(guān)于x的方程(k2-4)x2+
k-1
x+5=0是一元二次方程,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、已知x=2是關(guān)于x的方程3x-3=k的解,則k的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

直角△ABC的三邊a、b、c均滿足關(guān)于x的方程x2-mx+
2
=0
,則△ABC的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知x=-2是關(guān)于x的方程
12
(1-2ax)=x+a的解,則a的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關(guān)于x的方程:(m-2)xm2-m+(m-1)x+6=0是一元二次方程,試求m的值.

查看答案和解析>>

同步練習冊答案