精英家教網(wǎng)如圖,已知AB∥DE,BF,EF分別平分∠ABC與∠CED,若∠BCE=140°,求∠BFE的度數(shù).
分析:過(guò)點(diǎn)C作CP∥AB,然后利用兩直線平行,內(nèi)錯(cuò)角相等得到∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;同理過(guò)點(diǎn)F作FM∥DE,則∠BFM=∠ABF,∠MFE=∠DEF,結(jié)合角平分線的性質(zhì)就可求出∠BFE的度數(shù).
解答:精英家教網(wǎng)解:如圖,過(guò)點(diǎn)C作CP∥AB,則∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分別平分∠ABC,∠CED,
∴∠ABF=
1
2
∠ABC,∠DEF=
1
2
∠DEC;
∴∠ABF+∠DEF=
1
2
(∠ABC+∠DEC)=70°,
過(guò)點(diǎn)F作FM∥DE,則∠BFM=∠ABF,∠MFE=∠DEF,
∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
點(diǎn)評(píng):本題主要考查作輔助線構(gòu)造三條互相平行的直線,然后利用平行線的性質(zhì)和角的和差關(guān)系求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,已知AB∥DE,∠A=136°,∠C=164°,則∠D的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB=DE,BC=EF,∠B=∠E,A、F、C、D在同一條直線上,
(1)求證:EF∥BC;
(2)若AD=10,CF=4,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,請(qǐng)補(bǔ)充完整過(guò)程,說(shuō)明△ABC≌△DEF的理由.
∵AB∥DE
∴∠
A
A
=∠
EDF
EDF

∵BC∥EF
∴∠
F
F
=∠
BCA
BCA
  ( 同 理 )
∵AD=CF   (已知)
∴AD+CD=CF+CD
AC
AC
=
DF
DF

在△ABC和△DEF中

∴△ABC≌△DEF
(ASA)
(ASA)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB∥DE,∠B=80°,CM平分∠BCE,求∠DCM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB∥DE,∠B=80°,CM平分∠BCD,CM⊥CN,垂足為C.求∠NCE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案