(2007•龍巖)如圖,△ABC中,∠B,∠C的平分線相交于點(diǎn)O,過O作DE∥BC,若BD+EC=5,則DE等于( )

A.7
B.6
C.5
D.4
【答案】分析:首先由DE∥BC得出∠DOB=∠OBC,∠EOC=∠OCB.又因?yàn)椤螧,∠C的平分線相交于點(diǎn)O,得出∠DBO=∠DOB,∠EOC=∠ECO,由等角對(duì)等邊可得DB=DO,EC=EO,故可求DE.
解答:解:∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB.
又∵∠B,∠C的平分線相交于點(diǎn)O,
∴∠DBO=∠DOB,∠EOC=∠ECO.
∴DB=DO,EC=EO,
又∵BD+EC=5,DO+EO=DE,
∴DE=5.
故選C.
點(diǎn)評(píng):本題考查的是平行線的性質(zhì)以及角平分線的性質(zhì).本題關(guān)鍵是找出內(nèi)錯(cuò)角相等,求出△DOB,△EOC為等腰三角形,從而求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•龍巖)如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個(gè)頂點(diǎn),已知BC∥x軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC.
(1)求拋物線的對(duì)稱軸;
(2)寫出A,B,C三點(diǎn)的坐標(biāo)并求拋物線的解析式;
(3)探究:若點(diǎn)P是拋物線對(duì)稱軸上且在x軸下方的動(dòng)點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省溫州市洞頭縣中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2007•龍巖)如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個(gè)頂點(diǎn),已知BC∥x軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC.
(1)求拋物線的對(duì)稱軸;
(2)寫出A,B,C三點(diǎn)的坐標(biāo)并求拋物線的解析式;
(3)探究:若點(diǎn)P是拋物線對(duì)稱軸上且在x軸下方的動(dòng)點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年海南省中考數(shù)學(xué)模擬試卷(4)(解析版) 題型:解答題

(2007•龍巖)如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個(gè)頂點(diǎn),已知BC∥x軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC.
(1)求拋物線的對(duì)稱軸;
(2)寫出A,B,C三點(diǎn)的坐標(biāo)并求拋物線的解析式;
(3)探究:若點(diǎn)P是拋物線對(duì)稱軸上且在x軸下方的動(dòng)點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•龍巖)如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個(gè)頂點(diǎn),已知BC∥x軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC.
(1)求拋物線的對(duì)稱軸;
(2)寫出A,B,C三點(diǎn)的坐標(biāo)并求拋物線的解析式;
(3)探究:若點(diǎn)P是拋物線對(duì)稱軸上且在x軸下方的動(dòng)點(diǎn),是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《圓》(08)(解析版) 題型:填空題

(2007•龍巖)如圖,圓錐的母線和底面的直徑均為6,圓錐的側(cè)面展開圖的圓心角等于    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案