解決數(shù)學(xué)問題時(shí)經(jīng)常用到平移.如圖,要在一段水平寬為8米,高為4米的階梯上鋪地毯,需要購買多長的地毯?我們可以把所有水平線段向下平移,豎直方向線段向右平移.得到所需地毯長度為8米+4米=12米.請你按照這個(gè)思路解決下面問題:
如圖,在寬為20m,長為32m的矩形地面上修筑同樣寬的道路(圖2中陰影部分),余下的部分種草坪,要使草坪的面積為540m2,求道路的寬.
分析:本題可設(shè)道路寬為x米,利用平移把不規(guī)則的圖形變?yōu)橐?guī)則圖形,如此一來,所有草坪面積之和就變?yōu)榱耍?2-x)(20-x)米2,進(jìn)而即可列出方程,求出答案.
解答:解:利用平移,原圖可轉(zhuǎn)化為右圖,設(shè)道路寬為x米,
根據(jù)題意得:(20-x)(32-x)=540
整理得:x2-52x+100=0
解得:x1=50(不合題意,舍去),x2=2.
答:道路寬為2米.
點(diǎn)評:考查了一元二次方程的應(yīng)用,這類題目體現(xiàn)了數(shù)形結(jié)合的思想,需利用平移把不規(guī)則的圖形變?yōu)橐?guī)則圖形,進(jìn)而即可列出方程,求出答案.另外還要注意解的合理性,從而確定取舍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

21、我們在解決數(shù)學(xué)問題時(shí),經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時(shí),我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時(shí),我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
問題提出:如何把一個(gè)正方形分割成n(n≥9)個(gè)小正方形?
為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個(gè)正方形分割成4個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了3個(gè)正方形.
基本分割法2:如圖②,把一個(gè)正方形分割成6個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了5個(gè)正方形.

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
(1)把一個(gè)正方形分割成9個(gè)小正方形.
一種方法:如圖③,把圖①中的任意1個(gè)小正方形按“基本分割法2”進(jìn)行分割,就可增加5個(gè)小正方形,從而分割成4+5=9(個(gè))小正方形.
另一種方法:如圖④,把圖②中的任意1個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3個(gè)小正方形,從而分割成6+3=9(個(gè))小正方形.
(2)把一個(gè)正方形分割成10個(gè)小正方形.
方法:如圖⑤,把圖①中的任意2個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3×2個(gè)小正方形,從而分割成4+3×2=10(個(gè))小正方形.
(3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個(gè)小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
(4)把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
方法:通過“基本分割法1”、“基本分割法2”或其組合把一個(gè)正方形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正方形,從而把一個(gè)正方形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依次類推,即可把一個(gè)正方形分割成n(n≥9)個(gè)小正方形.
從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個(gè)小正方形.
類比應(yīng)用:仿照上面的方法,我們可以把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形.
(1)基本分割法1:把一個(gè)正三角形分割成4個(gè)小正三角形(請你在圖a中畫出草圖);
(2)基本分割法2:把一個(gè)正三角形分割成6個(gè)小正三角形(請你在圖b中畫出草圖);
(3)分別把圖c、圖d和圖e中的正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

(4)請你寫出把一個(gè)正三角形分割成n(n≥9)個(gè)小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

解決數(shù)學(xué)問題時(shí)經(jīng)常用到平移.如圖,要在一段水平寬為8米,高為4米的階梯上鋪地毯,需要購買多長的地毯?我們可以把所有水平線段向下平移,豎直方向線段向右平移.得到所需地毯長度為8米+4米=12米.請你按照這個(gè)思路解決下面問題:
如圖,在寬為20m,長為32m的矩形地面上修筑同樣寬的道路(圖2中陰影部分),余下的部分種草坪,要使草坪的面積為540m2,求道路的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我們在解決數(shù)學(xué)問題時(shí),經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.

譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時(shí),我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時(shí),我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.

問題提出:如何把一個(gè)正方形分割成)個(gè)小正方形?

為解決上面問題,我們先來研究兩種簡單的“基本分割法”.

基本分割法1:如圖①,把一個(gè)正方形分割成4個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了3個(gè)正方形.

基本分割法2:如圖②,把一個(gè)正方形分割成6個(gè)小正方形,即在原來1個(gè)正方形的基礎(chǔ)上增加了5個(gè)正方形.

 


問題解決:有了上述兩種“基本分割法”后,我們就可以把一個(gè)正方形分割成)個(gè)小正方形.

(1)把一個(gè)正方形分割成9個(gè)小正方形.

一種方法:如圖③,把圖①中的任意1個(gè)小正方形按“基本分割法2”進(jìn)行分割,就可增加5個(gè)小正方形,從而分割成(個(gè))小正方形.

另一種方法:如圖④,把圖②中的任意1個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加3個(gè)小正方形,從而分割成(個(gè))小正方形.

(2)把一個(gè)正方形分割成10個(gè)小正方形.

方法:如圖⑤,把圖①中的任意2個(gè)小正方形按“基本分割法1”進(jìn)行分割,就可增加個(gè)小正方形,從而分割成(個(gè))小正方形.

(3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個(gè)小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)

(4)把一個(gè)正方形分割成)個(gè)小正方形.

方法:通過“基本分割法1”、“基本分割法2”或其組合把一個(gè)正方形分割成9個(gè)、10個(gè)和11個(gè)小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個(gè)小正方形,從而把一個(gè)正方形分割成12個(gè)、13個(gè)、14個(gè)小正方形,依次類推,即可把一個(gè)正方形分割成)個(gè)小正方形.

從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成)個(gè)小正方形.

類比應(yīng)用:仿照上面的方法,我們可以把一個(gè)正三角形分割成)個(gè)小正三角形.

(1)基本分割法1:把一個(gè)正三角形分割成4個(gè)小正三角形(請你在圖a 中畫出草圖).

(2)基本分割法2:把一個(gè)正三角形分割成6個(gè)小正三角形(請你在圖b 中畫出草圖).

(3)分別把圖c、圖d和圖e中的正三角形分割成9個(gè)、10個(gè)和11個(gè)小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)

 


(4)請你寫出把一個(gè)正三角形分割成)個(gè)小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北京市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

解決數(shù)學(xué)問題時(shí)經(jīng)常用到平移.如圖,要在一段水平寬為8米,高為4米的階梯上鋪地毯,需要購買多長的地毯?我們可以把所有水平線段向下平移,豎直方向線段向右平移.得到所需地毯長度為8米+4米=12米.請你按照這個(gè)思路解決下面問題:
如圖,在寬為20m,長為32m的矩形地面上修筑同樣寬的道路(圖2中陰影部分),余下的部分種草坪,要使草坪的面積為540m2,求道路的寬.

查看答案和解析>>

同步練習(xí)冊答案