如圖,拋物線y1=ax2-2ax+b經(jīng)過(guò)A(-1,0),C(0,
3
2
)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)Q在線段MB上移動(dòng),且∠MPQ=45°,設(shè)線段OP=x,MQ=
2
2
y2,求y2與x的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(3)在同一平面直角坐標(biāo)系中,兩條直線x=m,x=n分別與拋物線交于點(diǎn)E、G,與(2)中的函數(shù)圖象交于點(diǎn)F、H.問(wèn)四邊形EFHG能否成為平行四邊形?若能,求m、n之間的數(shù)量關(guān)系;若不能,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)
分析:(1)將A、C的坐標(biāo)代入拋物線的解析式中,即可求出y1的函數(shù)解析式;
(2)過(guò)M作MN⊥x軸于N,根據(jù)拋物線y1的函數(shù)解析式,即可得到M點(diǎn)的坐標(biāo),可分別在Rt△MPN和Rt△MBN中,用勾股定理表示出MN的長(zhǎng),由此可得到關(guān)于PM、x的函數(shù)關(guān)系式;由于∠MPQ=∠MBP=45°,易證得△MPQ∽△MBP,根據(jù)相似三角形得到的比例線段即可得到關(guān)于PM、y2的關(guān)系式,聯(lián)立兩式即可求出y2、x的函數(shù)關(guān)系式;
(3)根據(jù)兩根拋物線的解析式和兩條直線的解析式,可求出E、F、G、H四點(diǎn)的坐標(biāo),即可得到EF、GH的長(zhǎng),由于EF∥GH,若四邊形EFHG是平行四邊形,那么必有EF=GH,可據(jù)此求出m、n的數(shù)量關(guān)系.
解答:解:(1)∵拋物線y1=ax2-2ax+b經(jīng)過(guò)A(-1,0),C(0,
3
2
)兩點(diǎn);
a+2a+b=0
b=
3
2
,
解得
a=-
1
2
b=
3
2

∴拋物線的解析式為y1=-
1
2
x2+x+
3
2


(2)作MN⊥AB,垂足為N.精英家教網(wǎng)
由y1=-
1
2
x2+x+
3
2
,易得M(1,2),N(1,0),A(-1,0),B(3,0);
∴AB=4,MN=BN=2,MB=2
2
,∠MBN=45°;
根據(jù)勾股定理有:BM2-BN2=PM2-PN2,
∴(2
2
2-22=PM2-(1-x)2…①;
又∠MPQ=45°=∠MBP,∠PMQ=∠BMP(公共角),
∴△MPQ∽△MBP,
∴PM2=MQ•MB=
2
2
y2•2
2
=2y2…②;
由①②得:y2=
1
2
x2-x+
5
2

∵0≤x<3,
∴y2與x的函數(shù)關(guān)系式為y2=
1
2
x2-x+
5
2
(0≤x<3);

(3)四邊形EFHG可以為平行四邊形,m、n之間的數(shù)量關(guān)系是:m+n=2(0≤m≤2且m≠1);
∵點(diǎn)E、G是拋物線y1=-
1
2
x2+x+
3
2
分別與直線x=m,x=n的交點(diǎn),精英家教網(wǎng)
∴點(diǎn)E、G坐標(biāo)為E(m,-
1
2
m2+m+
3
2
),G(n,-
1
2
n2+n+
3
2
);
同理,點(diǎn)F、H坐標(biāo)為F(m,
1
2
m2-m+
5
2
),H(n,
1
2
n2-n+
5
2
).
∴EF=
1
2
m2-m+
5
2
-(-
1
2
m2+m+
3
2
)=m2-2m+1,GH=
1
2
n2-n+
5
2
-(-
1
2
n2+n+
3
2
)=n2-2n+1;
∵四邊形EFHG是平行四邊形,EF=GH,
∴m2-2m+1=n2-2n+1,
∴(m+n-2)(m-n)=0;
∵由題意知m≠n,
∴m+n=2(m≠1);
因此四邊形EFHG可以為平行四邊形,m、n之間的數(shù)量關(guān)系是m+n=2(0≤m≤2且m≠1).
點(diǎn)評(píng):此題考查了二次函數(shù)解析式的確定、勾股定理、相似三角形的判定和性質(zhì)、平行四邊形的判定等知識(shí),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1=-x2+2向右平移1個(gè)單位得到拋物線y2,則圖中陰影部分的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1=a(x-m)2與y2關(guān)于y軸對(duì)稱(chēng),頂點(diǎn)分別為B、A,y1與y軸的交點(diǎn)為C.若由A,B,C組成的三角形中,tan∠ABC=2.求:
(1)a與m滿(mǎn)足的關(guān)系式;
(2)如圖,動(dòng)點(diǎn)Q、M分別在y1和y2上,N、P在x軸上,構(gòu)成矩形MNPQ,當(dāng)a為1時(shí),請(qǐng)問(wèn):
①Q(mào)點(diǎn)坐標(biāo)是多少時(shí),矩形MNPQ的周長(zhǎng)最短?
②若E為MQ與y軸的交點(diǎn),是否存在這樣的矩形,使得△CEQ與△QPB相似?若存在,請(qǐng)直接寫(xiě)出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜賓)如圖,拋物線y1=x2-1交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線向右平移4個(gè)單位得拋物線y2,兩條拋物線相交于點(diǎn)C.
(1)請(qǐng)直接寫(xiě)出拋物線y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿(mǎn)足∠CPA=∠OBA,求出所有滿(mǎn)足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1=ax2+bx和直線y2=kx+m相交于點(diǎn)(-2,0)和(1,3),則當(dāng)y2<y1,時(shí),x的取值范圍是
x>1或x<-2
x>1或x<-2

查看答案和解析>>

同步練習(xí)冊(cè)答案