(2008•泰州)已知二次函數(shù)y1=ax2+bx+c(a≠0)的圖象經(jīng)過三點(1,0),(-3,0),(0,-).
(1)求二次函數(shù)的解析式,并在給定的直角坐標系中作出這個函數(shù)的圖象;
(2)若反比例函數(shù)y2=(x>0)的圖象與二次函數(shù)y1=ax2+bx+c(a≠0)的圖象在第一象限內(nèi)交于點A(x,y),x落在兩個相鄰的正整數(shù)之間,請你觀察圖象,寫出這兩個相鄰的正整數(shù);
(3)若反比例函數(shù)y2=(x>0,k>0)的圖象與二次函數(shù)y1=ax2+bx+c(a≠0)的圖象在第一象限內(nèi)的交點A,點A的橫坐標x滿足2<x<3,試求實數(shù)k的取值范圍.

【答案】分析:(1)已知了拋物線與x軸的交點,可用交點式來設(shè)二次函數(shù)的解析式.然后將另一點的坐標代入即可求出函數(shù)的解析式.
(2)可根據(jù)(1)的拋物線的解析式和反比例函數(shù)的解析式來聯(lián)立方程組,求出的方程組的解就是兩函數(shù)的交點坐標,然后找出第一象限內(nèi)交點的坐標,即可得出符合條件的x的值,進而可寫出所求的兩個正整數(shù).
(3)點A的橫坐標x滿足2<x<3,可通過x=2,x=3兩個點上拋物線與反比例函數(shù)的大小關(guān)系即可求出k的取值范圍.
解答:解:(1)設(shè)拋物線解析式為y=a(x-1)(x+3),
將(0,-)代入,解得a=
∴拋物線解析式為y=x2+x-


(2)正確的畫出反比例函數(shù)在第一象限內(nèi)的圖象,
由圖象可知,交點的橫坐標x落在1和2之間,從而得出這兩個相鄰的正整數(shù)為1與2.

(3)由函數(shù)圖象或函數(shù)性質(zhì)可知:當2<x<3時,
對y1=x2+x-,y1隨著x增大而增大,
對y2=(k>0),y2隨著x的增大而減。
因為A(x,y)為二次函數(shù)圖象與反比例函數(shù)圖象的交點,
所以當x=2時,由反比例函數(shù)圖象在二次函數(shù)上方得y2>y1
×22+2-,
解得k>5.
同理,當x=3時,由二次函數(shù)圖象在反比例上方得y1>y2
×32+3-,
解k<18,
所以K的取值范圍為5<k<18.
點評:本題主要考查了二次函數(shù)和反比例函數(shù)的相關(guān)知識以及在直角坐標系中作圖、讀圖的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2008年江蘇省泰州市中考數(shù)學試卷(解析版) 題型:解答題

(2008•泰州)已知二次函數(shù)y1=ax2+bx+c(a≠0)的圖象經(jīng)過三點(1,0),(-3,0),(0,-).
(1)求二次函數(shù)的解析式,并在給定的直角坐標系中作出這個函數(shù)的圖象;
(2)若反比例函數(shù)y2=(x>0)的圖象與二次函數(shù)y1=ax2+bx+c(a≠0)的圖象在第一象限內(nèi)交于點A(x,y),x落在兩個相鄰的正整數(shù)之間,請你觀察圖象,寫出這兩個相鄰的正整數(shù);
(3)若反比例函數(shù)y2=(x>0,k>0)的圖象與二次函數(shù)y1=ax2+bx+c(a≠0)的圖象在第一象限內(nèi)的交點A,點A的橫坐標x滿足2<x<3,試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省溫州市外國語學校一模試卷(解析版) 題型:解答題

(2008•泰州)已知關(guān)于x的不等式ax+3>0(其中a≠0).
(1)當a=-2時,求此不等式的解,并在數(shù)軸上表示此不等式的解集;
(2)小明準備了十張形狀、大小完全相同的不透明卡片,上面分別寫有整數(shù):-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,將這10張卡片寫有整數(shù)的一面向下放在桌面上.從中任意抽取一張,以卡片上的數(shù)作為不等式中的系數(shù)a,求使該不等式?jīng)]有正整數(shù)解的概率.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(義蓬二中 余笑蓉)(解析版) 題型:解答題

(2008•泰州)已知關(guān)于x的不等式ax+3>0(其中a≠0).
(1)當a=-2時,求此不等式的解,并在數(shù)軸上表示此不等式的解集;
(2)小明準備了十張形狀、大小完全相同的不透明卡片,上面分別寫有整數(shù):-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,將這10張卡片寫有整數(shù)的一面向下放在桌面上.從中任意抽取一張,以卡片上的數(shù)作為不等式中的系數(shù)a,求使該不等式?jīng)]有正整數(shù)解的概率.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年江蘇省泰州市中考數(shù)學試卷(解析版) 題型:解答題

(2008•泰州)已知關(guān)于x的不等式ax+3>0(其中a≠0).
(1)當a=-2時,求此不等式的解,并在數(shù)軸上表示此不等式的解集;
(2)小明準備了十張形狀、大小完全相同的不透明卡片,上面分別寫有整數(shù):-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,將這10張卡片寫有整數(shù)的一面向下放在桌面上.從中任意抽取一張,以卡片上的數(shù)作為不等式中的系數(shù)a,求使該不等式?jīng)]有正整數(shù)解的概率.

查看答案和解析>>

同步練習冊答案