年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:蕭紅中學(xué)(四年制) 新概念數(shù)學(xué) 八年級(jí)上(人教版) 題型:059
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書 九年級(jí)數(shù)學(xué) 上。ńK版課標(biāo)本) 江蘇版課標(biāo)本 題型:059
如圖,已知:如圖(1),AB是⊙O的直徑,P是AB上的一點(diǎn)(與A、B不重合).QP⊥AB,垂足為P,直線QA交⊙O于C點(diǎn),過C點(diǎn)作⊙O的切線交直線QP于點(diǎn)D,則△CDQ是等腰三角形.對(duì)上述命題證明如下:
證明:連結(jié)OC.
∵OA=OC,∴∠A=∠1.
∵CD切⊙O于C點(diǎn),
∴∠OCD=90°,
∴∠1+∠2=90°,
∴∠A+∠2=90°.
在Rt△QPA中,∠QPA=90°,
∴∠A+∠Q=90°,
∴∠2=∠Q.∴DQ=DC.
即△CDQ是等腰三角形.
問題:對(duì)上述命題,當(dāng)點(diǎn)P在BA的延長(zhǎng)線上時(shí),其他條件不變,如圖(2)所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(1)求證:△BCE≌△DCF.
(2)若∠BEC=60°,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法。請(qǐng)你運(yùn)用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高。
(1)若BD=h,M時(shí)直線BC上的任意一點(diǎn),M到AB、AC的距離分別為。
① 若M在線段BC上,請(qǐng)你結(jié)合圖形①證明:= h;
② 當(dāng)點(diǎn)M在BC的延長(zhǎng)線上時(shí),,h之間的關(guān)系為 (請(qǐng)直接寫出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標(biāo)系中有兩條直線:y = x + 6 ; :y = -3x+6 若上的一點(diǎn)M到的距離是3,請(qǐng)你利用以上結(jié)論求解點(diǎn)M的坐標(biāo)。
圖②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com