已知,等邊△ABC邊長(zhǎng)為6,P為BC邊上一點(diǎn),且BP=4,點(diǎn)E、F分別在邊AB、AC上,且∠EPF=60°,設(shè)BE=x,CF=y.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)①若四邊形AEPF的面積為時(shí),求x的值.
②四邊形AEPF的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值及此時(shí)x的值;若不存在,請(qǐng)說(shuō)明理由.

(1) , x的取值范圍是;(2) ①4,②存在,x=2,.

解析試題分析:(1)求出△BEP∽△CPF,得出比例式,代入求出即可;
(2)①過(guò)A作AD⊥BC于D,過(guò)E作EN⊥BC于N,過(guò)F作FM⊥BC于M,求出AD=3,EN=x,CF=y=,F(xiàn)M=,根據(jù)S四邊形AEPF=S△ABC-S△BEP-S△CFP得出方程,求出x即可;
②四邊形AEPF的面積存在最大值,把9-x-化成--2+5,即可得出答案.
試題解析:(1)∵∠EPF=60°
∴∠BPE+∠CPF=120°
∵∠B=60°∴∠BPE+∠BEP=120°
∴∠BEP=∠CPF又∵∠B=∠C=60°
∴△BEP∽△CPF


, x的取值范圍是.
(2)①過(guò)A作AD⊥BC于D,
過(guò)E作EN⊥BC于N,過(guò)F作FM⊥BC于M

∵∠B=60°,AB=6,BE=x
∴AD=sin60°×6=, EN=sin60°×x=x
∵∠C=60°,CF=∴FM=sin60°×

.
∴x2-5x+4=0 
∴x1=1(舍去),x2=4




∴當(dāng),即x=2時(shí),四邊形AEPF的面積存在最大值,最大值是.
考點(diǎn):1.相似三角形的判定與性質(zhì);2.一元二次方程的應(yīng)用;3.二次函數(shù)的最值;4.等邊三角形的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在等腰△ABC中,底邊BC=8,高AD=2,一動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BC向右運(yùn)動(dòng),到達(dá)D點(diǎn)停止;另一動(dòng)點(diǎn)P從距離B點(diǎn)1個(gè)單位的位置出發(fā),以相同的速度沿BC向右運(yùn)動(dòng),到達(dá)DC中點(diǎn)停止;已知P、Q同時(shí)出發(fā),以PQ為邊作正方形PQMN,使正方形PQMN和△ABC在BC的同側(cè),設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)當(dāng)點(diǎn)N落在AB邊上時(shí),t的值為   ,當(dāng)點(diǎn)N落在AC邊上時(shí),t的值為   ;
(2)設(shè)正方形PQMN與△ABC重疊部分面積為S,求出當(dāng)重疊部分為五邊形時(shí)S與t的函數(shù)關(guān)系式以及t的取值范圍;
(3)(本小題選做題,做對(duì)得5分,但全卷不超過(guò)150分)
如圖2,分別取AB、AC的中點(diǎn)E、F,連接ED、FD,當(dāng)點(diǎn)P、Q開(kāi)始運(yùn)動(dòng)時(shí),點(diǎn)G從BE中點(diǎn)出發(fā),以每秒 個(gè)單位的速度沿折線BE-ED-DF向F點(diǎn)運(yùn)動(dòng),到達(dá)F點(diǎn)停止運(yùn)動(dòng).請(qǐng)問(wèn)在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中,點(diǎn)G可能與PN邊的中點(diǎn)重合嗎?如果可能,請(qǐng)直接寫出t的值或取值范圍;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:二次函數(shù)中的滿足下表:


……

0
1
2
3
……

……
0




……
(1)求的值;
(2)根據(jù)上表求時(shí)的的取值范圍;
(3)若兩點(diǎn)都在該函數(shù)圖象上,且,試比較的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)y =ax²(a≠0)與直線y =2x-3的圖像交于點(diǎn)(1,b).
求:(1)a和b的值;
(2)求拋物線y =ax²的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,二次函數(shù)y=ax2+2ax+b的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C(0,),其頂點(diǎn)在直線y=-2x上.
(1)求a,b的值;
(2)寫出當(dāng)-2≤x≤2時(shí),二次函數(shù)y的取值范圍;
(3)以AC、CB為一組鄰邊作□ACBD,則點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D’是否在該二次函數(shù)的圖象上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分C2組成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”,已知點(diǎn)C的坐標(biāo)為(0,-),點(diǎn)M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限內(nèi)是否存在一點(diǎn)P,使得∆PBC的面積最大?若存在,求出∆PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)∆BDM為直角三角形時(shí),請(qǐng)直接寫出m的值.(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點(diǎn)間的距離為MN=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

學(xué)習(xí)了函數(shù)的知識(shí)后,數(shù)學(xué)活動(dòng)小組到文具店調(diào)研一種進(jìn)價(jià)為每支2元的活動(dòng)筆的銷售情況。調(diào)查后發(fā)現(xiàn),每支定價(jià)3元,每天能賣出100支,而且每支定價(jià)每下降0.1元,其銷售量將增加10支。但是物價(jià)局規(guī)定,該活動(dòng)筆每支的銷售利潤(rùn)不能超過(guò)其進(jìn)價(jià)的40%。設(shè)每支定價(jià)x元,每天的銷售利潤(rùn)為y元。
(1)求每天的銷售利潤(rùn)為y與每支定價(jià)x之間的函數(shù)關(guān)系式;
(2)如果要實(shí)現(xiàn)每天75元的銷售利潤(rùn),那么每支定價(jià)應(yīng)為多少元?
(3)當(dāng)每支定價(jià)為多少元時(shí),可以使這種筆每天的銷售利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx-3a經(jīng)過(guò)點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長(zhǎng)交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱.

(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3)。

(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案