作业宝如圖,在四邊形ABCD中,AD∥BC,BD⊥AD,點E,F(xiàn)分別是邊AB,CD的中點,且DE=BF.求證:∠A=∠C.

證明:∵AD∥BC,BD⊥AD,
∴∠DBC=∠BDA=90°,
∵在Rt△ADB中,E是AB的中線,
∴DE=AB,
同理:BF=DC,
∵DE=BF,
∴AB=CD,
在Rt△ADB和Rt△CBD中,
,
∴Rt△ADB≌Rt△CBD(HL),
∴∠A=∠C.
分析:首先根據(jù)平行線的性質(zhì)可得∠DBC=∠BDA=90°,再根據(jù)直角三角形的性質(zhì)可得DE=AB,BF=DC,然后可得AB=CD,再證明Rt△ADB≌Rt△CBD可得∠A=∠C.
點評:此題主要考查了全等三角形的判定與性質(zhì),關(guān)鍵是找出證明Rt△ADB≌Rt△CBD的條件.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案