【題目】已知關(guān)于x的一元二次方程,
(1)求證:該一元二次方程總有兩個實數(shù)根;
(2)若該方程只有一個小于4的根,求m的取值范圍;
(3)若x1,x2為方程的兩個根,且n=x12+x22﹣4,判斷動點所形成的數(shù)圖象是否經(jīng)過點,并說明理由.
【答案】(1)證明見解析;(2)m≥2;(3)經(jīng)過,理由見解析.
【解析】
(1)由△=[-(m+4)]2-4(2m+4)=m2≥0知方程有兩個實數(shù)根;
(2)由一元二次方程的求根公式得出方程的兩個根,由于其中一個等于2,已經(jīng)小于4,故令另外一個含有m的根大于等于4,即可求出m的值;
(3)先由一元二次方程根與系數(shù)的關(guān)系得出x1+x2=m+4,x1x2=2m+4,代入n=x12+x22-4,從而將動點P(m,n)僅用含m的代數(shù)式表示,再將點A(-5,9)代入驗證即可.
(1)證明:∵b2﹣4ac=[﹣(m+4)]2﹣4(2m+4)=m2≥0,
∴該一元二次方程總有兩個實數(shù)根;
(2)解:∵關(guān)于x的一元二次方程x2﹣(m+4)x+2m+4=0
∴a=1,b=﹣(m+4),c=2m+4
∴由一元二次方程的求根公式得:x==
∴x1=m+2,x2=2
∵該方程只有一個小于4的根
∴m+2≥4
∴m≥2;
(3)∵x1+x2=m+4,x1x2=2m+4
∴n=x12+x22﹣4
=﹣2x1x2﹣4
=(m+4)2﹣2(2m+4)﹣4
=m2+4m+4
∴動點P(m,n)可表示為(m,m2+4m+4)
∴當(dāng)m=﹣5時,m2+4m+4=25﹣20+4=9
∴動點P(m,n)所形成的數(shù)圖象經(jīng)過點A(﹣5,9).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c是等腰三角形ABC的三條邊的長,其中a=3,如果b、c是關(guān)于x的一元ニ次方程-9+m=0的兩個根,求m的値.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)中,四邊形OCNM為矩形,如圖1,M點坐標(biāo)為(m,0),C點坐標(biāo)為(0,n),已知m,n滿足.
(1)求m,n的值;
(2)①如圖1,P,Q分別為OM,MN上一點,若∠PCQ=45°,求證:PQ=OP+NQ;
②如圖2,S,G,R,H分別為OC,OM,MN,NC上一點,SR,HG交于點D.若∠SDG=135°,,則RS=______;
(3)如圖3,在矩形OABC中,OA=5,OC=3,點F在邊BC上且OF=OA,連接AF,動點P在線段OF是(動點P與O,F不重合),動點Q在線段OA的延長線上,且AQ=FP,連接PQ交AF于點N,作PM⊥AF于M.試問:當(dāng)P,Q在移動過程中,線段MN的長度是否發(fā)生變化?若不變求出線段MN的長度;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的直徑AB=10cm,弦AC=6cm,∠ACB的平分線交⊙O于點D,
(1)求證:△ABD是等腰三角形;
(2)求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E、F分別在平行四邊形ABCD邊BC和AD上(E、F都不與兩端點重合),連結(jié)AE、DE、BF、CF,其中AE和BF交于點G,DE和CF交于點H.令,.若,則圖中有_______個平行四邊形(不添加別的輔助線);若,且四邊形ABCD的面積為28,則四邊形FGEH的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家、食堂,圖書館在同一條直線上,小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,如圖反映了這個過程中,小明離家的距離y(km)與時間x(min)之間的對應(yīng)關(guān)系,根據(jù)圖象,下列說法正確的是( 。
A.小明吃早餐用了25min
B.食堂到圖書館的距離為0.6km
C.小明讀報用了30min
D.小明從圖書館回家的速度為0.8km/min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點P在AD 邊上以每秒1cm的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當(dāng)點P到達(dá)點D時停止(同時點Q也停止),在運動以后,以P、D、Q、B四點組成平行四邊形的次數(shù)有( )
A. 4次 B. 3次 C. 2次 D. 1次
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com