已知:關(guān)于x的方程x2+2x=3-4k有兩個不相等的實數(shù)根(其中k為實數(shù)).
【小題1】求k的取值范圍;
【小題2】若k為非負整數(shù),求此時方程的根.


【小題1】解一:原方程可化為(x+1)2=4-4k.
∵該方程有兩個不相等的實數(shù)根,
∴4-4k>0.
解得k<1.
∴k的取值范圍是k<1.
解二:原方程可化為x2+2x+4k-3=0.
?       =22-4(4k-3)=4(4-4k).以下同解法一.
【小題2】解:∵k為非負整數(shù),k<1,
∴k=0.
此時方程為x2+2x=3,它的根為x1=-3,x2=1.

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數(shù)量,方程總有實數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、已知:關(guān)于x的方程x2+2x=3-4k有兩個不相等的實數(shù)根(其中k為實數(shù))
(1)則k的取值范圍是
k<1

(2)若k為非負整數(shù),則此時方程的根是
-3或1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、已知:關(guān)于x的方程x2-kx-2=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:關(guān)于x的方程ax2-(1-3a)x+2a-1=0,求證:a取任何實數(shù)時,方程ax2-(1-3a)x+2a-1=0總有實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:關(guān)于x的方程x2+kx-12=0,求證:方程有兩個不相等的實數(shù)根.

查看答案和解析>>

同步練習冊答案