如圖,已知是⊙O的圓周角,,則圓心角是(  。

A.             B.             C.             D.

 

【答案】

D

【解析】

試題分析:圓周角定理:同弧或等弧所對(duì)圓周角等于它所對(duì)圓心角的一半。

=

故選D.

考點(diǎn):圓周角定理

點(diǎn)評(píng):本題是圓周角定理的基礎(chǔ)應(yīng)用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),難度一般.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:⊙O的半徑是8,從⊙O外一點(diǎn)P,引圓的兩條切線PA,PB,切點(diǎn)分別精英家教網(wǎng)為A,B.
(1)若∠APB=70°,求AP的長(zhǎng)度(結(jié)果精確到0.1);
(2)當(dāng)OP為何值時(shí),∠APB=90°.
(參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8191,tan35°≈0.7002,cot35°≈1.4281)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形OABC的邊長(zhǎng)為4,⊙M是以O(shè)C為直徑的圓,現(xiàn)以O(shè)為原點(diǎn),邊OA、OC所在的直線為坐標(biāo)軸建精英家教網(wǎng)立平面直角坐標(biāo)系,使點(diǎn)B落在第四象限,一條拋物線y=ax2+bx經(jīng)過O、C兩點(diǎn),并將拋物線的頂點(diǎn)記作P.
(1)求證:4a+b=0;
(2)當(dāng)點(diǎn)P同時(shí)在⊙M和正方形OABC的內(nèi)部時(shí),求a的取值范圍;
(3)過A點(diǎn)作直線AD切⊙M于點(diǎn)D,交BC于點(diǎn)E.
①求E點(diǎn)的坐標(biāo);
②如果拋物線與直線y=x-4只有一個(gè)公共點(diǎn),請(qǐng)你判斷四邊形CMPE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC的直角邊AC=24,斜邊AB=25,一個(gè)以點(diǎn)P為圓心、半徑為1的圓在△ABC內(nèi)部沿順時(shí)針方向滾動(dòng),且運(yùn)動(dòng)過程中⊙P一直保持與△ABC的邊相切,當(dāng)點(diǎn)P第一次回到它的初始位置時(shí)所經(jīng)過路徑的長(zhǎng)度是
112
3
112
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB⊥x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點(diǎn)C、D.若AB=3BD,以點(diǎn)C為圓心,CA的長(zhǎng)為半徑作圓,則該圓與x軸的位置關(guān)系是
相離
相離
(填“相離”、“相切”或“相交”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知圓柱體底面圓的半徑為
3π
,高為2,AB、CD分別是兩底面的直徑,AD、BC是母線若一只小蟲從A點(diǎn)出發(fā),從側(cè)面爬行到C點(diǎn),求小蟲爬行的最短路線的長(zhǎng)度(畫出展開圖,結(jié)果保留根式).

查看答案和解析>>

同步練習(xí)冊(cè)答案