已知:關(guān)于x的方程x2+kx-1=0.
(1)求證:方程一定有兩個(gè)不相等的實(shí)數(shù)根:
(2)諾方程的兩根分別為x1,x2,且
1
x1
=2-
1
x2
,求k的值.
分析:(1)只需證明方程的判別式△>0即可;
(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,以及
1
x1
=2-
1
x2
,則
x1+x2
x1x2
=2,可以得到關(guān)于k的方程,然后解方程即可求出k的值.
解答:證明:(1)∵△=k2+4>0,
∴方程一定有兩個(gè)不相等的實(shí)數(shù)根;

解:(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,
得x1+x2=-k,x1x2=-1,
1
x1
=2-
1
x2
,
x1+x2
x1x2
=2,
-k
-1
=2,
即k=2.
點(diǎn)評(píng):此題主要考查學(xué)生是否能夠根據(jù)一元二次方程根的判別式判定方程根的情況,熟練利用根與系數(shù)的關(guān)系進(jìn)行解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱(chēng);
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知:關(guān)于x的方程x2+2x=3-4k有兩個(gè)不相等的實(shí)數(shù)根(其中k為實(shí)數(shù))
(1)則k的取值范圍是
k<1

(2)若k為非負(fù)整數(shù),則此時(shí)方程的根是
-3或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、已知:關(guān)于x的方程x2-kx-2=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程ax2-(1-3a)x+2a-1=0,求證:a取任何實(shí)數(shù)時(shí),方程ax2-(1-3a)x+2a-1=0總有實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程x2+kx-12=0,求證:方程有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案