B
分析:首先設定一個為一次函數y1=mx+n的圖象,再考慮另一條的m,n的值,看看是否矛盾即可.
解答:A、如果過第一、二、四象限的圖象是y1,由y1的圖象可知,m<0,n>0;由y2的圖象可知,n>0,m>0,兩結論相矛盾,故錯誤;
B、如果過第一、二、四象限的圖象是y1,由y1的圖象可知,m<0,n>0;由y2的圖象可知,n>0,m<0,兩結論不矛盾,故正確;
C、如果過第一、二、四象限的圖象是y1,由y1的圖象可知,m<0,n>0;由y2的圖象可知,n>0,m>0,兩結論相矛盾,故錯誤;
D、如果過第二、三、四象限的圖象是y1,由y1的圖象可知,m<0,n<0;由y2的圖象可知,n<0,m>0,兩結論相矛盾,故錯誤.
故選B.
點評:此題主要考查了一次函數的圖象性質,要掌握它的性質才能靈活解題.一次函數y=kx+b的圖象有四種情況:
①當k>0,b>0,函數y=kx+b的圖象經過第一、二、三象限;
②當k>0,b<0,函數y=kx+b的圖象經過第一、三、四象限;
③當k<0,b>0時,函數y=kx+b的圖象經過第一、二、四象限;
④當k<0,b<0時,函數y=kx+b的圖象經過第二、三、四象限.