an+2÷an•an+7÷a5=
an+4
an+4
分析:直接利用同底數(shù)冪的乘法與同底數(shù)冪的除法的知識(shí)求解即可求得答案,注意同級(jí)運(yùn)算從左到右依次進(jìn)行.
解答:解:an+2÷an•an+7÷a5=a2•an+7÷a5=an+9÷a5=an+4
故答案為:an+4
點(diǎn)評(píng):此題考查了同底數(shù)冪的乘法以及同底數(shù)冪的除法.注意掌握指數(shù)的變化是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、把多項(xiàng)式an+3+an-2(n為大于2的正整數(shù))分解因式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)已知拋物線yn=-(x-an2+an(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線y1=-(x-a12+a1與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為(
9
9
,
9
9
);依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(
n2
n2
,
n2
n2
);所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是
y=x
y=x
;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得的線段長(zhǎng),直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長(zhǎng)度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線yn=-(x-an2+an(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線y1=-(x-a12+a1與x軸的交點(diǎn)為A(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為(______,______);依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(______,______);所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是______;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得的線段長(zhǎng),直接寫出AA1的值,并求出An-1An;
②是否存在經(jīng)過點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長(zhǎng)度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線yn=-(x-an2+an(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線y1=-(x-a12+a1與x軸的交點(diǎn)為A(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為(______,______);依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為(______,______);所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是______;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得的線段長(zhǎng),直接寫出AA1的值,并求出An-1An;
②是否存在經(jīng)過點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長(zhǎng)度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案