【題目】如圖,已知一條直線(xiàn)過(guò)點(diǎn),且與拋物線(xiàn)交于兩點(diǎn),其中點(diǎn)的橫坐標(biāo)是.

⑴求這條直線(xiàn)的函數(shù)關(guān)系式及點(diǎn)的坐標(biāo) ;

⑵在軸上是否存在點(diǎn) ,使得是直角三角形?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

⑶過(guò)線(xiàn)段上一點(diǎn),作軸,交拋物線(xiàn)于點(diǎn),點(diǎn)在第一象限;點(diǎn),當(dāng)點(diǎn)的橫坐標(biāo)為何值時(shí), 的長(zhǎng)度最大?最大值是多少?

【答案】(1)點(diǎn)的坐標(biāo)為;(2);(3)當(dāng)的橫坐標(biāo)為6時(shí), 的長(zhǎng)度最大值為18.

【解析】⑴關(guān)鍵是求直線(xiàn)的解析式,由于直線(xiàn)上有一點(diǎn)為,所以再找一個(gè)點(diǎn)即可求出直線(xiàn)的解析式; 的橫坐標(biāo)是代入拋物線(xiàn)的解析式即可求出它的縱坐標(biāo),利用待定系數(shù)法可求直線(xiàn)的函數(shù)關(guān)系式;由于點(diǎn)是兩個(gè)函數(shù)圖象的交點(diǎn),所以把兩個(gè)函數(shù)聯(lián)立起來(lái),利用方程思想可以解決問(wèn)題.

⑵先假設(shè)存在,在假設(shè)存在的情況下還要分類(lèi)討論,因?yàn)闆](méi)有指明直角頂點(diǎn),所以要分成三種情況來(lái)討論,利用勾股定理建立方程可以解決問(wèn)題.

⑶利用的橫坐標(biāo)分別表示出線(xiàn)段的長(zhǎng)度,再利用建立函數(shù)關(guān)系,再根據(jù)函數(shù)關(guān)系來(lái)求最值.

解:⑴∵直線(xiàn)與拋物線(xiàn)交點(diǎn)的橫坐標(biāo)是,

,

∴點(diǎn)的坐標(biāo)是

設(shè)此直線(xiàn)的解析式為

代入得 ,

解得: ,

∴此直線(xiàn)的解析式為.

∵直線(xiàn)和拋物線(xiàn)交于兩點(diǎn),

解得:

∴點(diǎn)的坐標(biāo)為 .

.如備用圖,點(diǎn)軸上,連接 .

的坐標(biāo)是,點(diǎn)的坐標(biāo)為 ,

,

若設(shè)存在的點(diǎn)的坐標(biāo)為,則:

,

.當(dāng)時(shí), , ,

解得: .

.當(dāng)時(shí), ,

解得: .

.當(dāng)時(shí), ,

解得: .

∴求出點(diǎn)的坐標(biāo)為 .

.設(shè)點(diǎn) ,設(shè)軸的交點(diǎn)為;

,由勾股定理的: ,

又∵點(diǎn)與點(diǎn)的縱坐標(biāo)相同,∴ ,

,即點(diǎn)的橫坐標(biāo)為,

,

,

∴當(dāng)時(shí),又∵,取值最大值取到18.

∴當(dāng)的橫坐標(biāo)為6時(shí), 的長(zhǎng)度最大值為18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對(duì)角線(xiàn)AC

重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長(zhǎng)為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】快遞公司準(zhǔn)備購(gòu)買(mǎi)機(jī)器人來(lái)代替人工分揀已知購(gòu)買(mǎi)- 臺(tái)甲型機(jī)器人比購(gòu)買(mǎi)-臺(tái)乙型機(jī)器人多萬(wàn)元;購(gòu)買(mǎi)臺(tái)甲型機(jī)器人和臺(tái)乙型機(jī)器人共需萬(wàn)元.

(1)求甲、乙兩種型號(hào)的機(jī)器人每臺(tái)的價(jià)格各是多少萬(wàn)元;

(2)已知甲型、乙型機(jī)器人每臺(tái)每小時(shí)分揀快遞分別是件、件,該公司計(jì)劃最多用萬(wàn)元購(gòu)買(mǎi)臺(tái)這兩種型號(hào)的機(jī)器人.該公司該如何購(gòu)買(mǎi),才能使得每小時(shí)的分揀量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點(diǎn)O,⊙O與AC相切于點(diǎn)D,BE⊥AB交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,與⊙O相交于G、F兩點(diǎn).

(1)求證:AB與⊙O相切;

(2)若等邊三角形ABC的邊長(zhǎng)是8,求線(xiàn)段BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定一種新運(yùn)算:對(duì)于任意有理數(shù)ab,規(guī)定ab=ab2+2ab+a.如:13=1×32+2×1×3+1=16

1)求2-1)的值;

2)若(a+13=32,求a的值;

3)若m=2xn=x3(其中x為有理數(shù)),試比較m、n的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,射線(xiàn)分別和直線(xiàn)交于點(diǎn),射線(xiàn)分別和直線(xiàn)交于點(diǎn).點(diǎn)(點(diǎn)與三點(diǎn)不重合).連接.請(qǐng)你根據(jù)題意畫(huà)出圖形并用等式直接寫(xiě)出、之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試中,某班級(jí)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)圖如圖.下列說(shuō)法錯(cuò)誤的是(  )

A. 得分在70~80分之間的人數(shù)最多 B. 該班的總?cè)藬?shù)為40

C. 得分在90~100分之間的人數(shù)最少 D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)內(nèi):

﹣5,|-|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),

(1)正數(shù)集合:{ …}

(2)負(fù)數(shù)集合:{ …}

(3)整數(shù)集合:{ …}

(4)分?jǐn)?shù)集合:{ …}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的圖象與軸有兩個(gè)公共點(diǎn).

1)求的取值范圍,寫(xiě)出當(dāng)取其范圍內(nèi)最大整數(shù)時(shí)拋物線(xiàn)的解析式;

2)將(1)中所求得的拋物線(xiàn)記為,

①求的頂點(diǎn)的坐標(biāo);

②若當(dāng)時(shí), 的取值范圍是,求的值;

3)將平移得到拋物線(xiàn),使的頂點(diǎn)落在以原點(diǎn)為圓心半徑為的圓上,求點(diǎn)兩點(diǎn)間的距離最大時(shí)的解析式,怎樣平移可以得到所求拋物線(xiàn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案