如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點(diǎn)D是AB的中點(diǎn),連接CD,過點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F(xiàn),與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下五個(gè)結(jié)論:
=;②∠ADF=∠CDB;③點(diǎn)F是GE的中點(diǎn);④AF=AB;⑤S△ABC=5S△BDF
其中正確結(jié)論的序號是   
【答案】分析:由△AFG∽△BFC,可確定結(jié)論①正確;
由△ABG≌△BCD,△AFG≌△AFD,可確定結(jié)論②正確;
由△AFG≌△AFD可得FG=FD>FE,所以點(diǎn)F不是GE中點(diǎn),可確定結(jié)論③錯(cuò)誤;
由△AFG≌△AFD可得AG=AB=BC,進(jìn)而由△AFG∽△BFC確定點(diǎn)F為AC的三等分點(diǎn),可確定結(jié)論④正確;
因?yàn)镕為AC的三等分點(diǎn),所以S△ABF=S△ABC,又S△BDF=S△ABF,所以S△ABC=6S△BDF,由此確定結(jié)論⑤錯(cuò)誤.
解答:解:依題意可得BC∥AG,
∴△AFG∽△BFC,∴,
又AB=BC,∴
故結(jié)論①正確;
如右圖,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4.
在△ABG與△BCD中,

∴△ABG≌△BCD(ASA),
∴AG=BD,又BD=AD,∴AG=AD;
在△AFG與△AFD中,

∴△AFG≌△AFD(SAS),∴∠5=∠2,
又∠5+∠3=∠1+∠3=90°,∴∠5=∠1,
∴∠1=∠2,即∠ADF=∠CDB.
故結(jié)論②正確;
∵△AFG≌△AFD,∴FG=FD,又△FDE為直角三角形,∴FD>FE,
∴FG>FE,即點(diǎn)F不是線段GE的中點(diǎn).
故結(jié)論③錯(cuò)誤;
∵△ABC為等腰直角三角形,∴AC=AB;
∵△AFG≌△AFD,∴AG=AD=AB=BC;
∵△AFG∽△BFC,∴,∴FC=2AF,
∴AF=AC=AB.
故結(jié)論④正確;
∵AF=AC,∴S△ABF=S△ABC;又D為中點(diǎn),∴S△BDF=S△ABF,
∴S△BDF=S△ABC,即S△ABC=6S△BDF
故結(jié)論⑤錯(cuò)誤.
綜上所述,結(jié)論①②④正確,
故答案為:①②④.
點(diǎn)評:本題考查了等腰直角三角形中相似三角形與全等三角形的應(yīng)用,有一定的難度.對每一個(gè)結(jié)論,需要仔細(xì)分析,嚴(yán)格論證;注意各結(jié)論之間并非彼此孤立,而是往往存在邏輯關(guān)聯(lián)關(guān)系,需要善加利用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案