(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

【答案】分析:(1)本題利用矩形的性質和相似三角形的性質,根據(jù)MN∥BC,得△AMN∽△ABC,求出△ABC中邊BC上高AD的長度.
(2)因為正方形的位置在變化,但是△AMN∽△ABC沒有改變,利用相似三角形對應邊上高的比等于相似比,得出等量關系,代入解析式,
(3)用含x的式子表示矩形MEFN邊長,從而求出面積的表達式.
解答:解:(1)由BC=6,S△ABC=12,得AD=4;

(2)當PQ恰好落在邊BC上時,
∵MN∥BC,∴△AMN∽△ABC.
,
=,x=2.4(或);

(3)設BC分別交MP,NQ于E,F(xiàn),則四邊形MEFN為矩形.
設ME=NF=h,AD交MN于G(如圖2)GD=NF=h,AG=4-h.
∵MN∥BC,
∴△AMN∽△ABC.
,即,

∴y=MN•NF=x(-x+4)=-x2+4x(2.4<x<6),
配方得:y=-(x-3)2+6.
∴當x=3時,y有最大值,最大值是6.
點評:本題結合相似三角形的性質及矩形面積計算方法,考查二次函數(shù)的綜合應用,解題時,要始終抓住相似三角形對應邊上高的比等于相似比,表示相關邊的長度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省成都市武侯區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年中考模擬試卷(解析版) 題型:解答題

(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省孝感市中考數(shù)學試卷(解析版) 題型:解答題

(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

同步練習冊答案