已知拋物線的頂點(diǎn)為(1,0),且經(jīng)過(guò)點(diǎn)(0,1).

(1)求該拋物線對(duì)應(yīng)的函數(shù)的解析式;

(2)將該拋物線向下平移個(gè)單位,設(shè)得到的拋物線的頂點(diǎn)為A,與軸的兩個(gè)交點(diǎn)為B、C,若△ABC為等邊三角形.

①求的值;

②設(shè)點(diǎn)A關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn)D,在拋物線上是否存在點(diǎn)P,使四邊形CBDP為菱形?若存在,寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

解:(1)由題意可得,解得

∴拋物線對(duì)應(yīng)的函數(shù)的解析式為.………………………………3分

(2)①將向下平移個(gè)單位得:-=,可知A(1,-),B(1-,0),C(1+,0),BC=2.……………………………6分

由△ABC為等邊三角形,得,由>0,解得=3.…………7分

②不存在這樣的點(diǎn)P.   ……………………………………………………………8分

∵點(diǎn)D與點(diǎn)A關(guān)于軸對(duì)稱,∴D(1,3).由①得BC=2.要使四邊形CBDP為菱形,需DPBC,DP=BC

由題意,知點(diǎn)P的橫坐標(biāo)為1+2,

當(dāng)=1+2時(shí)-m==,故不存在這樣的點(diǎn)P.……………………………………………………………………11分

【相關(guān)知識(shí)點(diǎn)】確定二次函數(shù)的表達(dá)式;二次函數(shù)的性質(zhì);關(guān)于軸的對(duì)稱點(diǎn)的性質(zhì);等邊三角形的性質(zhì);菱形的判定

【解題思路】二次函數(shù)的圖象與性質(zhì)是中考的重點(diǎn)與難點(diǎn),因而應(yīng)高度重視,本題屬于綜合性較強(qiáng)的題目,應(yīng)理清思路,對(duì)每一個(gè)知識(shí)點(diǎn)都應(yīng)熟練掌握并能靈活運(yùn)用,本題求出二次函數(shù)的解析式是解此題的關(guān)鍵,應(yīng)熟練掌握三點(diǎn)式和頂點(diǎn)式求拋物線解析式的方法;二次函數(shù)的平移通常指的是圖象的平移,應(yīng)注意總結(jié)平移的規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(2,1),且經(jīng)過(guò)原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.
(1)求拋物線的解析式;
(2)若點(diǎn)C在拋物線的對(duì)稱軸上,點(diǎn)D在拋物線上,且以O(shè)、C、D、B四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求D點(diǎn)的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點(diǎn)P,使得△OBP與△OAB相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線的頂點(diǎn)為M(5,6),且經(jīng)過(guò)點(diǎn)C(-1,0).
(1)求拋物線的解析式;
(2)設(shè)拋物線與y軸交于點(diǎn)A,過(guò)A作AB∥x軸,交拋物線于另一點(diǎn)B,則拋物線上存在點(diǎn)P,使△ABP的面積等于△ABO的面積,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)將拋物線向右平移,使拋物線經(jīng)過(guò)點(diǎn)(5,0),請(qǐng)直接答出曲線段CM(拋精英家教網(wǎng)物線圖象的一部分,如圖中的粗線所示)在平移過(guò)程中所掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點(diǎn)P為所求拋物線上的一動(dòng)點(diǎn),試判斷以點(diǎn)P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說(shuō)明理由.
(3)如圖2,設(shè)點(diǎn)P在拋物線上且與點(diǎn)A不重合,直線PB與拋物線的另一個(gè)交點(diǎn)為Q,過(guò)點(diǎn)P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衡陽(yáng))如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過(guò)點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過(guò)Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)為(-1,-2),且通過(guò)(1,10),則這條拋物線的表達(dá)式為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案