先填空后計(jì)算:
1
n
- 
1
n+1
=
 
1
n+1
-
1
n+2
=
 
1
n+2
-
1
n+3
=
 

②計(jì)算:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+…+
1
(n+2007)(n+2008)
分析:①先通分成同分母的分式,再進(jìn)行加減運(yùn)算;
②根據(jù)題意得出規(guī)律:
1
n(n+1)
=
1
n
- 
1
n+1
;將每一項(xiàng)展開,再合并計(jì)算即可.
解答:解:①原式=
n+1-n
n(n+1)
=
1
n(n+1)
;
原式=
n+2-n-1
(n+1)(n+2)
=
1
(n+1)(n+2)
;
原式=
n+3-n-2
(n+2)(n+3)
=
1
(n+2)(n+3)
;
②原式=
1
n
- 
1
n+1
+
1
n+1
-
1
n+2
+
1
n+2
-
1
n+3
+…+
1
n+2007
-
1
n+2008

=
1
n
-
1
n+2008

=
n+2008-n
n(n+2008)

=
2008
n(n+2008)
點(diǎn)評:本題考查了分式的加減運(yùn)算,先找出規(guī)律是解決此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案