如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是2,線段AB的兩端點分別在直線l1、l3上并與l2相交于點E,
①AE與BE的長度大小關系為
AE=BE
AE=BE
;
②若以線段AB為一邊作正方形ABCD,C、D兩點恰好分別在直線l2、l4上,則sinα=
5
5
5
5
分析:(1)根據(jù)平行線分線段成比例定理可得AE:BE=1,從而得到AE=BE;
(2)過點B作BF⊥l1于F,過點D作DG⊥l1于G,根據(jù)正方形的性質(zhì)可得∠BAD=90°,AB=AD,再根據(jù)同角的余角相等求出∠ABF=∠DAG,然后利用“角角邊”證明△ABF和△DAG全等,根據(jù)全等三角形對應邊相等可得AG=BF,再利用勾股定理列式求出AD,然后根據(jù)銳角的正弦等于對邊比斜邊列式計算即可得解.
解答:解:(1)∵l1∥l2∥l3,相鄰兩條平行直線間的距離都是2,
∴AE:BE=2:2=1,
∴AE=BE;

(2)如圖,過點B作BF⊥l1于F,過點D作DG⊥l1于G,
∵相鄰兩條平行直線間的距離都是2,
∴BF=4,DG=2,
∵四邊形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∵∠ABF+∠BAF=90°,
∠DAG+∠BAF=180°-∠BAD=180°-90°=90°,
∴∠ABF=∠DAG,
∵在△ABF和△DAG中,
∠ABF=∠DAG
∠AFB=∠DAG=90°
AB=AD

∴△ABF≌△DAG(AAS),
∴AG=BF=4,
在Rt△ADG中,AD=
AG2+DG2
=
42+22
=2
5
,
所以sinα=
DG
AD
=
2
2
5
=
5
5

故答案為:(1)AE=BE;(2)
5
5
點評:本題考查了正方形的性質(zhì),平行線分線段成比例定理,全等三角形的判定與性質(zhì),銳角三角函數(shù)的定義,作出輔助線,構(gòu)造出全等三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、如圖,已知直線l1,l2,l3相交于點O,∠1=35°,∠2=25°,則∠3等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•郯城縣一模)如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個頂點分別在四條直線上,則cosα=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•黔南州)如圖,已知直線l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:已知直線l1∥l2,且l3、l4和l1、l2分別交于點A、B和點C、D,點P在AB上,設∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之間的關系,并說明你的結(jié)論的正確性.
(2)若點P在A、B兩點之間運動時(點P和A、B不重合),∠1、∠2、∠3 之間的關系
不會
不會
發(fā)生變化(填會或不會)
(3)如果點P在A、B兩點外側(cè)運動時,(點P和A、B不重合)
①當點P在射線AM上時,猜想∠1、∠2、∠3之間的關系為
∠2=∠3-∠1
∠2=∠3-∠1

②當點P在射線BN上時,猜想∠1、∠2、∠3之間的關系為
∠3=∠1-∠2
∠3=∠1-∠2
(不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線l3上有點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上.
(1)如果點P在C、D之間運動時,試說明∠PAC+∠PBD=∠APB;
(2)如果點P在直線l1的上方運動時,試探索∠PAC,∠APB,∠PBD之間的關系又是如何?
(3)如果點P在直線l2的下方運動時,∠PAC,∠APB,∠PBD之間的關系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接寫出結(jié)論)

查看答案和解析>>

同步練習冊答案