(2010•黔南州)下列各式中正確的是( )
A.-|-7|=7
B.2-3=-6
C.sin30°=
D.(π-3)=0
【答案】分析:本題涉及零指數(shù)冪、絕對值、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪四個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.
解答:解:A、錯誤,-|-7|=-7;
B、錯誤,2-3==
C、正確;
D、錯誤,(π-3)=1.
故選C.
點評:本題考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟記特殊角的三角函數(shù)值,熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、絕對值等考點的運算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇州市工業(yè)園區(qū)八年級第二學(xué)期數(shù)學(xué)卷 題型:單選題

(2010•黔南州)如果,則=(  )

A.B.1C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(30)(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點P的坐標(biāo);
②當(dāng)m為何值時,線段PB最短;
(3)當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省臺州市臨海市杜橋?qū)嶒炛袑W(xué)初三第四次統(tǒng)練數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點P的坐標(biāo);
②當(dāng)m為何值時,線段PB最短;
(3)當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省黔南州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點P的坐標(biāo);
②當(dāng)m為何值時,線段PB最短;
(3)當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年天津市東麗區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點A坐標(biāo)為(2,4),直線x=2與x軸相交于點B,連接OA,拋物線y=x2從點O沿OA方向平移,與直線x=2交于點P,頂點M到A點時停止移動.
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點P的坐標(biāo);
②當(dāng)m為何值時,線段PB最短;
(3)當(dāng)線段PB最短時,相應(yīng)的拋物線上是否存在點Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案