如圖,△ABC是一個(gè)邊長為1的等邊三角形,BB1是△ABC的高,B1B2是△ABB1的高,B2B3是△AB1B2的高,…,Bn-1Bn是△ABn-2Bn-1的高,則B4B5的長是________;猜想Bn-1Bn的長是________.

    
分析:根據(jù)等邊三角形性質(zhì)得出AB1=CB1=,∠AB1B=∠BB1C=90°,由勾股定理求出BB1=,求出△ABC的面積是;求出==,根據(jù)三角形的面積公式求出B1B2=,由勾股定理求出BB2,根據(jù)=+代入求出B2B3==,B3B4==,B4B5==,推出Bn-1Bn=
解答:∵△ABC是等邊三角形,
∴BA=AC,
∵BB1是△ABC的高,
∴AB1=CB1=,∠AB1B=∠BB1C=90°,
由勾股定理得:BB1==
∴△ABC的面積是×1×=;
==×=,
=×1×B1B2,
B1B2=,
由勾股定理得:BB2==,
=+
=××+××B2B3,
B2B3=,
B3B4=,
B4B5=,
…,
Bn-1Bn=
故答案為:
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì),勾股定理,三角形的面積等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是能根據(jù)計(jì)算結(jié)果得出規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,△ABC是一個(gè)等邊三角形,它繞著點(diǎn)P旋轉(zhuǎn),可以與等邊△ABD重合,則這樣的點(diǎn)P有
3
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是一個(gè)邊長為1的等邊三角形,BB1是△ABC的高,B1B2是△ABB1的高,B2B3是△AB1B2的高,B3B4是△AB2B3的高,…Bn-1Bn是△ABn-2Bn-1的高
(1)求BB1的長;
(2)填空:B1B2的長為
 
,B2B3的長為
 
;
(3)根據(jù)(1)、(2)的計(jì)算結(jié)果,猜想寫出Bn-1Bn的值(用含n的代數(shù)式表示,n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是一個(gè)圓錐的左視圖,其中AB=AC=5,BC=8,則這個(gè)圓錐的側(cè)面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是一個(gè)等腰三角形,直角邊的長度是1米,現(xiàn)在以點(diǎn)C為圓心,把三角形ABC順時(shí)針旋轉(zhuǎn)90度,那么,AB邊在旋轉(zhuǎn)時(shí)所掃過的面積是( 。┢椒矫祝

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷柔區(qū)一模)如圖,△ABC是一個(gè)邊長為2的等邊三角形,AD0⊥BC,垂足為點(diǎn)D0.過點(diǎn)D0作D0D1⊥AB,垂足為點(diǎn)D1;再過點(diǎn)D1作D1D2⊥AD0,垂足為點(diǎn)D2;又過點(diǎn)D2作D2D3⊥AB,垂足為點(diǎn)D3;…;這樣一直作下去,得到一組線段:D0D1,D1D2,D2D3,…,則線段D1D2的長為
3
4
3
4
,線段Dn-1Dn的長為
(
3
2
)n
(
3
2
)n
(n為正整數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案