如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.
(1)求證:△COM∽△CBA;
(2)求線段OM的長度.
(1)證明見解析(2)
【解析】解:(1)證明:∵A與C關(guān)于直線MN對稱,∴AC⊥MN!唷螩OM=90°。
在矩形ABCD中,∠B=90°,∴∠COM=∠B。
又∵∠ACB=∠ACB,∴△COM∽△CBA。
(2)∵在Rt△CBA中,AB=6,BC=8,∴由勾股定理得AC=10。∴OC=5。
∵△COM∽△CBA,∴,即。∴OM=。
(1)根據(jù)A與C關(guān)于直線MN對稱得到AC⊥MN,進一步得到∠COM=90°,從而得到在矩形ABCD中∠COM=∠B,最后證得△COM∽△CBA;
(2)利用(1)的相似三角形的對應邊成比例得到比例式后即可求得OM的長。
科目:初中數(shù)學 來源: 題型:
A、 | B、 | C、 | D、 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com