問(wèn)題背景: 如圖(a),點(diǎn)A、B在直線l的同側(cè),要在直線l上找一點(diǎn)C,使AC與BC的距離之和最小,我們可以作出點(diǎn)B關(guān)于l的對(duì)稱點(diǎn)B′,連接AB′與直線l交于點(diǎn)C,則點(diǎn)C即為所求.
實(shí)踐運(yùn)用: 如圖(b),已知,⊙O的直徑CD為4,點(diǎn)A 在⊙O 上,∠ACD = 30°,B 為弧AD 的中點(diǎn),P為直徑CD上一動(dòng)點(diǎn),求:PA+ PB的最小值,并寫出解答過(guò)程.
知識(shí)拓展:如圖(c),在菱形ABCD中,AB = 10,∠DAB= 60°,P是對(duì)角線AC上一動(dòng)點(diǎn),E、F分別是線段AB和BC上的動(dòng)點(diǎn),則PE +PF的最小值是 .(直接寫出答案)
實(shí)踐運(yùn)用:; 知識(shí)拓展:.
【解析】
試題分析:實(shí)踐運(yùn)用:找點(diǎn)A或點(diǎn)B關(guān)于CD的對(duì)稱點(diǎn),再連接其中一點(diǎn)的對(duì)稱點(diǎn)和另一點(diǎn),和MN的交點(diǎn)P就是所求作的位置,根據(jù)題意先求出∠C′AE,再根據(jù)勾股定理求出AE,即可得出PA+PB的最小值;知識(shí)拓展:當(dāng)點(diǎn)E(E′)關(guān)于AC對(duì)稱點(diǎn)E″與P、F(F′)三點(diǎn)共線且與AD垂直時(shí),易求E″F(F′)的長(zhǎng)為.
試題解析:實(shí)踐運(yùn)用:如圖作點(diǎn)B關(guān)于CD的對(duì)稱點(diǎn)E,連接AE交CD于點(diǎn)P,此時(shí)PA+PB最小,且等于A。作直徑AC′,連接C′E,
根據(jù)垂徑定理得弧BD=弧DE.
∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°. ∴∠AOE=90°. ∴∠C′AE=45°.
又AC為圓的直徑,∴∠AEC′=90°.
∴∠C′=∠C′AE=45°. ∴C′E=AE=AC′=.
∴AP+BP的最小值是.
知識(shí)拓展:如圖所示,當(dāng)點(diǎn)E(E′)關(guān)于AC對(duì)稱點(diǎn)E″與P、F(F′)三點(diǎn)共線且與AD垂直時(shí),PE+PF有最小值.
易證四邊形BME″F′為矩形,則BM=E″F′.
在Rt△ABM中,AB=10,∠BAD=60°,∴E″F=BM=AB•sin∠BAD=.
考點(diǎn):1.軸對(duì)稱的應(yīng)用(最短路線問(wèn)題);2.圓周角定理;3.垂徑定理;4.等腰直角三角形的性質(zhì);5. 菱形的性質(zhì);6. 矩形的判定和性質(zhì);7.銳角三角函數(shù)定義;8.特殊角的三角函數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
AB |
BC |
CE |
CG |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:臨川區(qū)模擬 題型:解答題
AB |
BC |
CE |
CG |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com