【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象信息,當(dāng)t=________分鐘時甲乙兩人相遇,甲的速度為________/分鐘;

(2)求出線段AB所表示的函數(shù)表達式.

【答案】(1)24;40;(2)線段AB的表達式為:y=40t(40≤t≤60)

【解析】(1)根據(jù)圖象信息,當(dāng)t=24分鐘時甲乙兩人相遇,甲60分鐘行駛2400米,根據(jù)速度=路程÷時間可得甲的速度;
(2)由t=24分鐘時甲乙兩人相遇,可得甲、乙兩人的速度和為2400÷24=100/分鐘,減去甲的速度得出乙的速度,再求出乙從圖書館回學(xué)校的時間即A點的橫坐標(biāo),用A點的橫坐標(biāo)乘以甲的速度得出A點的縱坐標(biāo),再將A、B兩點的坐標(biāo)代入,利用待定系數(shù)法即可求出線段AB所表示的函數(shù)表達式.

1)根據(jù)圖象信息,當(dāng)t=24分鐘時甲乙兩人相遇,甲的速度為2400÷60=40/分鐘.

(2)∵甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),t=24分鐘時甲乙兩人相遇,
∴甲、乙兩人的速度和為2400÷24=100/分鐘,
∴乙的速度為100-40=60/分鐘.
乙從圖書館回學(xué)校的時間為2400÷60=40分鐘,
40×40=1600,
A點的坐標(biāo)為(40,1600).
設(shè)線段AB所表示的函數(shù)表達式為y=kt+b,
A(40,1600),B(60,2400),
,解得,
∴線段AB所表示的函數(shù)表達式為y=40t(40≤t≤60).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠B =C,點D、E分別是邊AB、AC上的點,PD平分∠BDEBCH,PE平分∠DECBCG,DQ平分∠ADEPE延長線于Q。

1)∠A+B+C+P +Q = °

2)猜想∠P與∠A的數(shù)量關(guān)系,并證明你的猜想;

3)若∠EGH =112°,求∠ADQ 的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將直角三角形ACB, ,AC=6,沿CB方向平移得直角三角形DEF,BF=2DG=,陰影部分面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格圖中有ABC,建立平面直角坐標(biāo)系后,點O的坐標(biāo)是(0,0).

(1)以O為位似中心,作A′B′C′ABC,A′B′C′ABC相似比為2:1,且A′B′C′在第二象限;

(2)在上面所畫的圖形中,若線段AC上有一點D,它的橫坐標(biāo)為k,點DA′C′上的對應(yīng)點D′的橫坐標(biāo)為﹣2﹣k,則k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G。

(1)求證:ABE∽△DEF;

(2)若正方形的邊長為4,求BG的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點,試分別根據(jù)下列條件,求出點的坐標(biāo)。

1)點軸上;

2)點橫坐標(biāo)比縱坐標(biāo)大3;

3)點在過點,且與軸平行的直線上。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)期間,揚州某商場為了吸引顧客,開展有獎促銷活動,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被分成4個面積相等的扇形四個扇形區(qū)域里分別標(biāo)有“10”、“20”、“30”、“40的字樣(如圖).規(guī)定同一日內(nèi)顧客在本商場每消費滿100元就可以轉(zhuǎn)動轉(zhuǎn)盤一次,商場根據(jù)轉(zhuǎn)盤指針指向區(qū)域所標(biāo)金額返還相應(yīng)數(shù)額的購物券,某顧客當(dāng)天消費240,轉(zhuǎn)了兩次轉(zhuǎn)盤

(1)該顧客最少可得 元購物券,最多可得 元購物券

(2)請用畫樹狀圖或列表的方法,求該顧客所獲購物券金額不低于50元的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點P是線段AD上的一個動點,OBD的中點,PO的延長線交BCQ

1)求證:OP=OQ ;

2)若AD=8cm,AB=6cm,點P從點A出發(fā),以 的速度向點D 運動(不與D重合).設(shè)點P運動的時間為t秒,請用t表示PD的長;

3)當(dāng)t為何值時,四邊形PBQD是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級一班的暑假活動安排中,有一項是小制作評比.作品上交時限為81日至30日,班委會把同學(xué)們交來的作品按時間順序每5天組成一組,對每一組的件數(shù)進行統(tǒng)計,繪制成如圖所示的統(tǒng)計圖.已知從左到右各矩形的高度比為23461.第三組的頻數(shù)是12.請你回答:

1)本次活動共有 件作品參賽;

2)若將各組所占百分比繪制成扇形統(tǒng)計圖,那么第四組對應(yīng)的扇形的圓心角是 度。

3)本次活動共評出2個一等獎和3個二等獎及三等獎、優(yōu)秀獎若干名,對一、二等獎作品進行編號并制作成背面完全一致的卡片,背面朝上的放置,隨機抽出兩張卡片,抽到的作品恰好一個是一等獎,一個是二等獎的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案