以三角形的一邊長為直徑的圓切三角形的另一邊,則該三角形為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等邊三角形
【答案】分析:根據(jù)切線的性質(zhì)和三角形的特點即可得.
解答:解:根據(jù)切線的性質(zhì)和三角形的特點知,這個圓要過三角形的一邊的兩個頂點,又要與一邊相切,則必有一邊與圓只有一個交點,那么這邊與作為直徑的邊就垂直,故三角形是直角三角形.
故選B.
點評:本題利用了切線的性質(zhì)求解:直線與圓相切,則只有一個交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標系中,矩形OBCD的邊長OB=4,OD=2,點P是射線OB上一個動點,動點Q在PB或其延長線上運動,OP=PQ,作以PQ為一邊的正方形PQRS,點P從O點開始沿射線OB方向運動,運動速度是1個單位/秒,運動時間為t秒,直到點P與點B重合為止.
(1)設(shè)正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與t的函數(shù)關(guān)系式;
(2)y=2時,求t的值;
(3)當(dāng)t為何值時,三角形CSR為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直角坐標系中,矩形OBCD的邊長OB=4,OD=2,點P是射線OB上一個動點,動點Q在PB或其延長線上運動,OP=PQ,作以PQ為一邊的正方形PQRS,點P從O點開始沿射線OB方向運動,運動速度是1個單位/秒,運動時間為t秒,直到點P與點B重合為止.
(1)設(shè)正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與t的函數(shù)關(guān)系式;
(2)y=2時,求t的值;
(3)當(dāng)t為何值時,三角形CSR為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省鶴崗市中考數(shù)學(xué)仿真試卷(三)(解析版) 題型:解答題

如圖所示,在直角坐標系中,矩形OBCD的邊長OB=4,OD=2,點P是射線OB上一個動點,動點Q在PB或其延長線上運動,OP=PQ,作以PQ為一邊的正方形PQRS,點P從O點開始沿射線OB方向運動,運動速度是1個單位/秒,運動時間為t秒,直到點P與點B重合為止.
(1)設(shè)正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與t的函數(shù)關(guān)系式;
(2)y=2時,求t的值;
(3)當(dāng)t為何值時,三角形CSR為等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案