【題目】某市為提倡居民節(jié)約用水,自今年1月1日起調(diào)整居民用水價格.圖中、分別表示去年、今年水費(元)與用水量()之間的關(guān)系.小雨家去年用水量為150,若今年用水量與去年相同,水費將比去年多_____元.
【答案】210.
【解析】
根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得時,對應(yīng)的函數(shù)解析式,從而可以求得時對應(yīng)的函數(shù)值,由的的圖象可以求得時對應(yīng)的函數(shù)值,從而可以計算出題目中所求問題的答案,本題得以解決.
設(shè)當時,對應(yīng)的函數(shù)解析式為,
,得,
即當時,對應(yīng)的函數(shù)解析式為,
當時,,
由圖象可知,去年的水價是(元/),故小雨家去年用水量為150,需要繳費:(元),
(元),
即小雨家去年用水量為150,若今年用水量與去年相同,水費將比去年多210元,
故答案為:210.
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子中裝有4張卡片.4張卡片的正面分別標有數(shù)字1,2,3,4,這些卡片除數(shù)字外都相同,將卡片攪勻.
(1)從盒子任意抽取一張卡片,恰好抽到標有奇數(shù)卡片的概率是: ;
(2)先從盒子中任意抽取一張卡片,再從余下的3張卡片中任意抽取一張卡片,求抽取的2張卡片標有數(shù)字之和大于4的概率(請用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點的切線與OC的延長線交于點D,∠B=30°,OH=5.
(1)求⊙O的半徑;
(2)求出劣弧AC的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A.已知線段AB=40cm,點P是線段AB的黃金分割點,且AP>BP,則AP的長約為24.72cm
B.各有一個角是100°的等腰三角形相似
C.所有的矩形都相似
D.菱形既是軸對稱圖形,又是中心對稱圖形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校創(chuàng)客社團計劃利用新購買的無人機設(shè)備測量學校旗桿的高.他們先將無人機放在旗桿前的點處(無人機自身的高度忽略不計),測得此時點的仰角為,因為旗桿底部有臺階,所以不能直接測出垂足到點的距離.無人機起飛后,被風吹至點處,此時無人機距地面的高度為3米,測得此時點的俯角為,點的仰角為,且點,,在同一平面內(nèi),求旗桿的高度.(計算結(jié)果精確到0.1米,參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線經(jīng)過點、兩點,是其頂點,將拋物線繞點旋轉(zhuǎn),得到新的拋物線.
(1)求拋物線的函數(shù)解析式及頂點的坐標;
(2)如圖2,直線經(jīng)過點,是拋物線上的一點,設(shè)點的橫坐標為(),連接并延長,交拋物線于點,交直線l于點,,求的值;
(3)如圖3,在(2)的條件下,連接、,在直線下方的拋物線上是否存在點,使得?若存在,求出點的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若拋物線與軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向下平移3個單位,得到的拋物線過點( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)大致的圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是( )
A. 函數(shù)有最大值
B. 對稱軸是直線x=
C. 當x<時,y隨x的增大而減小
D. 當時﹣1<x<2時,y>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com