在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,若以C為圓心,3cm為半徑作圓,則點(diǎn)A在⊙C
,點(diǎn)B在⊙C
,若以AB為直徑作⊙O,則點(diǎn)C在⊙O
分析:根據(jù)點(diǎn)與圓的位置可直接判斷點(diǎn)A與點(diǎn)B與⊙C的關(guān)系;根據(jù)直角三角形斜邊上的中線性質(zhì)得到OC=
1
2
AB,再根據(jù)點(diǎn)與圓的位置可直接判斷點(diǎn)C與⊙O的關(guān)系.
解答:解:∵CA=3cm,
∴點(diǎn)A在⊙C上;
∵CB=4cm>3cm
點(diǎn)B在⊙C外;
∵⊙O為AB為直徑,即點(diǎn)O為AB的中點(diǎn),
∴OC=
1
2
AB,
∴點(diǎn)C在⊙O上.
故答案為上,外,上.
點(diǎn)評:本題考查了點(diǎn)與圓的位置:設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:點(diǎn)P在圓外?d>r;點(diǎn)P在圓上?d=r;點(diǎn)P在圓內(nèi)?d<r.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長為(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案