如圖,在6×8網(wǎng)格圖中,每個小正方形邊長均為1,點0和△ABC的頂點均為小正方形的頂點.
(1)以O為位似中心,在網(wǎng)絡圖中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比為 1:2;
(2)連接(1)中的AA′,求四邊形AA′C′C的周長.(結(jié)果保留根號)

【答案】分析:(1)根據(jù)位似比是1:2,畫出以O為位似中心的△A′B′C′;
(2)根據(jù)勾股定理求出AC,A′C′的長,由于AA′,CC′的長易得,相加即可求得四邊形AA′C′C的周長.
解答:解:(1)如圖所示:
(2)AA′=CC′=2.
在Rt△OA′C′中,
OA′=OC′=2,得A′C′=2
同理可得AC=4
∴四邊形AA′C′C的周長=4+6
點評:本題考查了畫位似圖形.畫位似圖形的一般步驟為:①確定位似中心,②分別連接并延長位似中心和能代表原圖的關鍵點;③根據(jù)相似比,確定能代表所作的位似圖形的關鍵點;順次連接上述各點,得到放大或縮小的圖形.同時考查了利用勾股定理求四邊形的周長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2013年浙江省湖州市中考數(shù)學試卷(解析版) 題型:選擇題

如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O為坐標原點建立如圖所示的平面直角坐標系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中數(shù)學 來源:2009年遼寧省沈陽市和平區(qū)中考數(shù)學監(jiān)測卷(二)(解析版) 題型:解答題

如圖,在10×10的正方形網(wǎng)格中△ABC與△DEF的頂點,都在邊長為1 的小正方形頂點上,且點A與原點重合.
(1)畫出△ABC關于點B為對稱中心的中心對稱圖形△A′BC′,畫出將△DEF向右平移6個單位且向上平移2個單位的△D′E′F′;
(2)求經(jīng)過A、B、C三點的二次函數(shù)關系式,并求出頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年北京市朝陽區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:填空題

已知:如圖,在2×2的網(wǎng)格中,每個小正方形的邊長都是1,圖中的陰影部分圖案是由一個點為圓心,半徑分別為1和2的圓弧圍成,則陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源:2013年4月中考數(shù)學模擬試卷(37)(解析版) 題型:解答題

已知:如圖,在8×12的矩形網(wǎng)格中,每個小正方形的邊長都為1,四邊形ABCD的頂點都在格點上.
(1)在所給網(wǎng)格中按下列要求畫圖:
①在網(wǎng)格中建立平面直角坐標系(坐標原點為O),使四邊形ABCD各個頂點的坐標分別為A(-5,0)、B(-4,0)、C(-1,3)、D(-5,1);
②將四邊形ABCD沿坐標橫軸翻折180°,得到四邊形A′B′C′D′,再把四邊形A′B′C′D′繞原點O旋轉(zhuǎn)180°,得到四邊形A″B″C″D″;
(2)寫出點C″、D″的坐標;
(3)請判斷四邊形A″B″C″D″與四邊形ABCD成何種對稱?若成中心對稱,請寫出對稱中心;若成軸對稱,請寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年福建省龍巖市連城一中自主招生考試數(shù)學試卷(解析版) 題型:填空題

如圖,在4×4方格中作以AB為一邊的Rt△ABC,要求點在格點上,這樣的Rt△能作出    個.

查看答案和解析>>

同步練習冊答案