在Rt△ABC中,斜邊AB=4,∠B=60°,將△ABC繞點B旋轉60°,頂點C運動的路線長是
 
(結果保留π).
分析:將△ABC繞點B旋轉60°,頂點C運動的路線長是就是以點B為圓心,BC為半徑所旋轉的弧,根據(jù)弧長公式即可求得.
解答:解:∵AB=4,∴BC=2,
所以弧長=
60π×2
180
=
2
3
π.
點評:本題的關鍵是理清所對應的弧的半徑.然后利用弧長公式求.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:數(shù)學教研室 題型:013

如圖所示,在Rt△ABC中,∠C=90°,∠A=35°,以直角頂點為旋轉中心,將△ABC旋轉到的位置,其中分別是A、B對應點,且點B在斜邊上,直角邊交AB于D,這時∠BDC的度數(shù)是

[  ]

A.70°
B.90°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學 來源:非常講解·教材全解全析數(shù)學八年級上(配課標北師大版) 課標北師大版 題型:044

如圖所示,Rt△ABC中,∠C=90°,∠ABC=60°,△ABC以點C為中心旋轉到△的位置,使B在斜邊上,C與AB相交于D,試確定∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:013

如圖所示,在Rt△ABC中,∠C=90°,∠A=35°,以直角頂點為旋轉中心,將△ABC旋轉到的位置,其中分別是A、B對應點,且點B在斜邊上,直角邊交AB于D,這時∠BDC的度數(shù)是

[  ]

A.70°
B.90°
C.100°
D.105°

查看答案和解析>>

同步練習冊答案