在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,下列條件中不能判定Rt△ABC≌Rt△A′B′C′的是


  1. A.
    AC=A′C′,∠B=∠B′
  2. B.
    ∠A=∠A′,∠B=∠B′
  3. C.
    AB=A′B′,AC=A′C′
  4. D.
    AB=A′B′,∠A=∠A′
B
分析:根據(jù)三角形全等的判定方法,SSS、SAS、ASA、AAS,HL等逐一檢驗(yàn).
解答:解:A、根據(jù)全等三角形的判定定理AAS可以判定△ABC≌△A′B′C′.故本選項(xiàng)不符合題意;
B、根據(jù)AAA不能判定Rt△ABC≌Rt△A′B′C′.故本選項(xiàng)符合題意;
C、根據(jù)全等三角形的判定定理SAS可以判定Rt△ABC≌Rt△A′B′C′.故本選項(xiàng)不符合題意;
D、根據(jù)全等三角形的判定定理AAS可以判定Rt△ABC≌Rt△A′B′C′.故本選項(xiàng)不符合題意;
故選B.
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知:如圖,在Rt△ABC和Rt△BAD中,AB為斜邊,AC=BD,BC,AD相交于點(diǎn)E.
(1)求證:AE=BE;
(2)若∠AEC=45°,AC=1,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖在Rt△ABC和Rt△BAD中,AB為斜邊,AC=BD,BC與AD相交于點(diǎn)E.
求證:AE=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC和Rt△DEF中,∠ABC=90°,AB=4,BC=6,∠DEF=90°,DE=EF=4.
(1)移動(dòng)△DEF,使邊DE與AB重合(如圖1),再將△DEF沿AB所在直線向左平移,使點(diǎn)F落在AC上(如圖2),求BE的長(zhǎng);
(2)將圖2中的△DEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)F落在BC上,連接AF(如圖3).請(qǐng)找出圖中的全等三角形,并說(shuō)明它們?nèi)鹊睦碛桑ú辉偬砑虞o助線,不再標(biāo)注其它字母)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在Rt△ABC和Rt△A′B′C′中(其中∠C=∠C′=90°),下列條件:
①AC=A′C′,∠A=∠A′;②AC=A′C′,BC=B′C′;③∠A=∠A′,∠B=∠B′;④∠B=∠B′.AB=A′B′;⑤AC=A′C′,AB=A′B′中,能判定兩個(gè)三角形全等的是
①②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,CE與BD相交于點(diǎn)M,BD交AC于點(diǎn)N.試猜想BD與CE有何關(guān)系?并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案