如圖,在△ABC中,D是BC的中點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:四邊形ADCF為平行四邊形;
(2)△ABC的邊或角滿足什么條件時(shí),四邊形ADCF為矩形.(不要求證明)

(1)證明:∵AF∥BC,
∴∠FAE=∠EDB,∠AFE=∠EBD,AE=ED,
∴△AEF≌△DEB(AAS),
∴AF=DB,又BD=DC,
∴AF=DC,
∴四邊形ADCF為平行四邊形.

(2)解:AB=AC(或∠ABC=∠ACB).
分析:(1)利用△AEF≌△DEB得到AF=DB,所以AF=DC,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可證明四邊形ADCF為平行四邊形;
(2)根據(jù)矩形的判定定理可知,有一個(gè)角是直角的平行四邊形是矩形,所以要令∠ADC=90°的條件皆可,如AB=AC或∠ABC=∠ACB.
點(diǎn)評(píng):本題考查三角形全等的判定方法以及平行四邊形,矩形的判定.要熟知這些判定定理才會(huì)靈活運(yùn)用,根據(jù)性質(zhì)才能得到需要的相等關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案