【題目】如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑0C為2,則弦BC的長為( 。
A. 1
B.
C. 2
D.
【答案】D
【解析】先由圓周角定理求出∠BOC的度數(shù),再過點O作OD⊥BC于點D,由垂徑定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由銳角三角函數(shù)的定義即可求出CD的長,進而可得出BC的長.
解:∵∠BAC=60°,
∴∠BOC=2∠BAC=2×60°=120°,
過點O作OD⊥BC于點D,
∵OD過圓心,
∴CD=BC,∠DOC=∠BOC=×120°=60°,
∴CD=OC×sin60°=2×=,
∴BC=2CD=2.
故選D.
本題考查的是圓周角定理、垂徑定理及銳角三角函數(shù)的定義,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組進行數(shù)學(xué)速算,比賽成績?nèi)缦拢旱?00分的有2人,96分的有4人,90分的2人,那么這個數(shù)學(xué)小組速算比賽是平均成績?yōu)?/span>分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在方格紙上有A,B兩點,若以點B為原點建立直角坐標(biāo)系,則點A的坐標(biāo)為(2,5).若以A點為原點建立直角坐標(biāo)系,則B點坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖像如圖所示,圖像過點,對稱軸為直線,下列結(jié)論:(1);(2);(3)若點、點、點在該函數(shù)圖像上,則;(4)若方程的兩根為和,且,則.其中正確結(jié)論的序號是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com