已知梯形ABCD中,AD∥BC,∠A+∠C=180°,則AB和CD的數(shù)量關(guān)系是    (填“相等”或“不相等”).
【答案】分析:根據(jù)梯形的性質(zhì)可得∠A+∠B=180°,已知∠A+∠C=180°,則可推出∠B=∠C,從而可利用同一底上兩個角相等的梯形是等腰梯形進(jìn)行判定,則不難求得AB和CD的數(shù)量關(guān)系.
解答:解:∵AD∥BC,
∴∠A+∠B=180°,
∵∠A+∠C=180°,
∴∠B=∠C,
∴梯形ABCD是等腰梯形,
∴AB=CD.
故答案為:相等.
點評:此題主要考查等腰梯形的判定定理:同一底上兩個角相等的梯形是等腰梯形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O點,∠BCD=60°,則下列說法錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2
3
,AE為梯形的高,且BE=1,則AD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知梯形ABCD中,AD∥CB,E,F(xiàn)分別是BD,AC的中點,BD平分∠ABC.
(1)求證:AE⊥BD;    (2)若AD=4,BC=14,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知梯形ABCD中,AD∥BC,AB=CD,∠B=45°,它的高為2cm,中位線長為5cm,則上底AD等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知梯形ABCD中,AD∥BC,∠B=40°,∠C=70°,AD=3,BC=7,則腰AB=
4
4

查看答案和解析>>

同步練習(xí)冊答案