△OAB是以正多邊形相鄰的兩個頂點A、B與它的中心O為頂點的三角形。若△OAB的一個內(nèi)角為70°,則該正多邊形的邊數(shù)為       。
9。
分兩種情況討論:若∠OAB=∠OBA=70°,則∠BOA=40°,邊數(shù)為:=9;
若∠BOA=70°,則邊數(shù)為:不為整數(shù),故不存在。綜上所述,邊數(shù)為9。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等邊三角形ABC中,BC=6,射線AG∥BC,點E從點A出發(fā)沿射線AG以的速度運動,同時點F從點B出發(fā)沿射線BC以的速度運動,設運動時間為

(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF
(2)填空:
①當     s時,四邊形ACFE是菱形;
②當     s時,以A,F(xiàn),C,E為頂點的四邊形是直角梯形。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在□ABCD中,點E,F(xiàn)分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點B,C分別落在點B′,C′處,線段EC′與線段AF交于點G,連接DG,B′G。

求證:(1)∠1=∠2  (2)DG=B′G

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC與BD交于點O,廷長BC到E,使得CE=AD,連接DE。
(1)求證:BD=DE。
(2)若AC⊥BD,AD=3,SABCD=16,求AB的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

矩形的兩鄰邊長的差為2,對角線長為4,則矩形的面積為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正方形硬紙片ABCD的邊長是4,點E、F分別是AB、BC的中點,若沿左圖中的虛線剪開,拼成如下右圖的一座“小別墅”,則圖中陰影部分的面積是(      ).

A.2    B.4    C.8     D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

圖①是一個長為2a,寬為2b的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的形狀拼成一個正方形.

(1)圖②中陰影部分的正方形的邊長是 _________ ;
(2)請用兩種不同的方法求圖2中陰影部分的面積:
方法1: _________。
方法2: _________;
(3)觀察圖②,請你寫出(a+b)2、(a﹣b)2、ab之間的等量關系是 _________;
(4)根據(jù)(3)中的等量關系解決如下問題:若m﹣n=﹣5,mn=3,則(m+n)2的值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一塊等腰梯形開關的土地,現(xiàn)要平均分給兩個農(nóng)戶種植(既將梯形的面積兩等分),試設計兩種方案。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是平行四邊形,AB=2,以邊AB為直徑的⊙O經(jīng)過點D,且∠DAB=45°.
 
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若以C為圓心的⊙C與⊙O 相切,求⊙C的半徑.

查看答案和解析>>

同步練習冊答案