如圖,在梯形ABCD中,AD∥BC,AB=CD,分別以AB,CD為邊向外側(cè)作等邊三角形ABE和等邊三角形DCF,連接AF,DE.
(1)求證:AF=DE;
(2)若∠BAD=45°,AB=a,△ABE和△DCF的面積之和等于梯形ABCD的面積,求BC的長(zhǎng).

【答案】分析:(1)根據(jù)等腰梯形的性質(zhì)和等邊三角形的性質(zhì)以及全等三角形的判定方法證明△AED≌△DFA即可;
(2)如圖作BH⊥AD,CK⊥AD,利用給出的條件和梯形的面積公式即可求出BC的長(zhǎng).
解答:(1)證明:在梯形ABCD中,AD∥BC,AB=CD,
∴∠BAD=∠CDA,
而在等邊三角形ABE和等邊三角形DCF中,
AB=AE,DC=DF,且∠BAE=∠CDF=60°,
∴AE=DF,∠EAD=∠FDA,AD=DA,
∴△AED≌△DFA(SAS),
∴AF=DE;

(2)解:如圖作BH⊥AD,CK⊥AD,則有BC=HK,
∵∠BAD=45°,
∴∠HAB=∠KDC=45°,
∴AB=BH=AH,
同理:CD=CK=KD,
∵S梯形ABCD=,AB=a,
∴S梯形ABCD==,
而S△ABE=S△DCF=a2,
=2×a2
∴BC=a.
點(diǎn)評(píng):本題綜合性的考查了等腰梯形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定、全等三角形的性質(zhì)以及等于直角三角形的性質(zhì)和梯形、三角形的面積公式,屬于中檔題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線(xiàn)BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案