分析:觀察題中的一系列等式發(fā)現(xiàn),從1開始的連續(xù)正整數(shù)的立方和等于這幾個連續(xù)正整數(shù)和的平方,根據(jù)此規(guī)律填空,
(1)根據(jù)上述規(guī)律填空,然后把1+2+…+n變?yōu)?span id="z5zppdf" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
個(n+1)相乘,即可化簡;
(2)對所求的式子前面加上1到10的立方和,然后根據(jù)上述規(guī)律分別求出1到15的立方和與1到10的立方和,求出的兩數(shù)相減即可求出值.
解答:解:由題意可知:1
3+2
3+3
3+4
3+5
3=(1+2+3+4+5)
2=225
(1)∵1+2+…+n=(1+n)+[2+(n-1)]+…+[
+(n-
+1)]=
,
∴1
3+2
3+3
3+…+n
3=(1+2+…+n)
2=[
]
2;
(2)11
3+12
3+13
3+14
3+15
3=1
3+2
3+3
3+…+15
3-(1
3+2
3+3
3+…+10
3)
=(1+2+…+15)
2-(1+2+…+10)
2=120
2-55
2=11375.
故答案為:1+2+3+4+5;225;1+2+…+n;
;11375.
點(diǎn)評:此題要求學(xué)生綜合運(yùn)用觀察、想象、歸納、推理概括等思維方式,探索問題,獲得解題途徑.考查了學(xué)生善于觀察,歸納總結(jié)的能力,以及運(yùn)用總結(jié)的結(jié)論解決問題的能力.