如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是( )

A.24m
B.25m
C.28m
D.30m
【答案】分析:由于人和地面是垂直的,即和路燈平行,構(gòu)成兩組相似.根據(jù)對應邊成比例,列方程解答即可.
解答:解:由兩三角形相似可知,=
解得:AP=5m
∵AP=BQ,PQ=20m.
∴AB=AP+BQ+PQ=5m+5m+20m=30m.
故選D.
點評:本題主要考查相似三角形的對應邊成比例在解決實際問題中的應用.應用相似三角形可以間接地計算一些不易直接測量的物體的高度和寬度.解題時關(guān)鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是
 
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是( 。
A、24mB、25mC、28mD、30m

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2009•蘭州)如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是( )

A.24m
B.25m
C.28m
D.30m

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省玉溪市易門縣六街中學中考數(shù)學模擬試卷(解析版) 題型:選擇題

(2009•蘭州)如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是( )

A.24m
B.25m
C.28m
D.30m

查看答案和解析>>

科目:初中數(shù)學 來源:2009年甘肅省蘭州市中考數(shù)學試卷(解析版) 題型:選擇題

(2009•蘭州)如圖,丁軒同學在晚上由路燈AC走向路燈BD,當他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是( )

A.24m
B.25m
C.28m
D.30m

查看答案和解析>>

同步練習冊答案