如果將方程
x+2
x2+2
+
2(x2+2)
x+2
=3
變形為y+
2
y
=3
,下列換元正確的是( 。
A、
1
x2+2
=y
B、
2x2
x+2
=y
C、
x
x2+2
=y
D、
x+2
x2+2
=y
分析:方程的兩個(gè)分式具備倒數(shù)關(guān)系,設(shè)
x+2
x2+2
=y
,則原方程另一個(gè)分式為
2
y
.可用換元法轉(zhuǎn)化為關(guān)于y的方程.
解答:解:應(yīng)設(shè)
x+2
x2+2
=y
,才能變形為y+
2
y
=3

故選D.
點(diǎn)評(píng):換元法解分式方程時(shí)常用方法之一,它能夠把一些分式方程化繁為簡(jiǎn),化難為易,對(duì)此應(yīng)注意總結(jié)能用換元法解的分式方程的特點(diǎn),尋找解題技巧.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解:將下列二次三項(xiàng)式在實(shí)數(shù)范圍內(nèi)分解因式:
(1)x2-5x+6;(2)x2-2x+1;(3)4x2+8x-1.
解:(1)令x2-5x+6=0,解得方程的兩根為x1=2,x2=3.則x2-5x+6=(x-2)(x-3)
(2)令x2-2x+1=0,解得方程的兩根為x1=x2=1,則x2-2x+1=(x-1)2;
(3)令4x2+8x-1=0,解得方程的兩根為x1=
-2+
5
2
,x2=
-2-
5
2
,則4x2+8x-1=4(x-
-2-
5
2
)(x-
-2-
5
2
)=(2x+2-
5
)(2x+2+
5

參考以上解答下列問(wèn)題:
在實(shí)數(shù)范圍內(nèi)因式分解:
①25x2+10x+1②4x2-8x+1
二次三項(xiàng)式2x2-3x+2在實(shí)數(shù)范圍內(nèi)能分解因式嗎?如果能,請(qǐng)你分解出來(lái);如果不能分解,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀思考:我們思考解決一個(gè)數(shù)學(xué)問(wèn)題,如果從某一角度用某種方法難以奏效時(shí),不妨換一個(gè)角度去觀察思考,換一種方法去處理,這樣有可能使問(wèn)題“迎刃而解”.
例如解方程:數(shù)學(xué)公式,這是一個(gè)高次方程,我們未學(xué)過(guò)其解法,難以求解.如果我們換一個(gè)角度(“已知”和“未知”互換),即將數(shù)學(xué)公式看做“未知數(shù)”,而將x看成“已知數(shù)”,則原方程可整理成:數(shù)學(xué)公式
b2-4ac=(-2x2-1)2-4x(x3+1)=4x2-4x+1=(2x-1)2
解得:數(shù)學(xué)公式1或數(shù)學(xué)公式
故方程可轉(zhuǎn)化為一個(gè)一元一次方程數(shù)學(xué)公式和一個(gè)一元二次方程x2-x+1=數(shù)學(xué)公式,從而不難求得這個(gè)高次方程的解.
問(wèn)題解決:
(1)上述解題過(guò)程中,用到的數(shù)學(xué)學(xué)習(xí)中常用的思想方法是
A、類比思想  B、函數(shù)思想  C、轉(zhuǎn)化思想  D、整體思想
(2)解方程:數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀理解:將下列二次三項(xiàng)式在實(shí)數(shù)范圍內(nèi)分解因式:
(1)x2-5x+6;(2)x2-2x+1;(3)4x2+8x-1.
解:(1)令x2-5x+6=0,解得方程的兩根為x1=2,x2=3.則x2-5x+6=(x-2)(x-3)
(2)令x2-2x+1=0,解得方程的兩根為x1=x2=1,則x2-2x+1=(x-1)2;
(3)令4x2+8x-1=0,解得方程的兩根為數(shù)學(xué)公式,則4x2+8x-1=4(x-數(shù)學(xué)公式)(數(shù)學(xué)公式)=(數(shù)學(xué)公式)(數(shù)學(xué)公式
參考以上解答下列問(wèn)題:
在實(shí)數(shù)范圍內(nèi)因式分解:
①25x2+10x+1②4x2-8x+1
二次三項(xiàng)式2x2-3x+2在實(shí)數(shù)范圍內(nèi)能分解因式嗎?如果能,請(qǐng)你分解出來(lái);如果不能分解,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年安徽省蕪湖市蕪湖縣實(shí)驗(yàn)學(xué)校九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀理解:將下列二次三項(xiàng)式在實(shí)數(shù)范圍內(nèi)分解因式:
(1)x2-5x+6;(2)x2-2x+1;(3)4x2+8x-1.
解:(1)令x2-5x+6=0,解得方程的兩根為x1=2,x2=3.則x2-5x+6=(x-2)(x-3)
(2)令x2-2x+1=0,解得方程的兩根為x1=x2=1,則x2-2x+1=(x-1)2;
(3)令4x2+8x-1=0,解得方程的兩根為,則4x2+8x-1=4(x-)()=()(
參考以上解答下列問(wèn)題:
在實(shí)數(shù)范圍內(nèi)因式分解:
①25x2+10x+1②4x2-8x+1
二次三項(xiàng)式2x2-3x+2在實(shí)數(shù)范圍內(nèi)能分解因式嗎?如果能,請(qǐng)你分解出來(lái);如果不能分解,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案