作業(yè)寶⊙O的半徑為4,如圖圓心O的坐標(biāo)為(0,0),點A的坐標(biāo)為(4,2),則點A與⊙O的位置關(guān)系是


  1. A.
    點A在⊙O內(nèi)
  2. B.
    點A在⊙O外
  3. C.
    點A在⊙O上
  4. D.
    不能確定
B
分析:本題先由勾股定理求得點A到圓心O的距離,再根據(jù)點與圓心的距離與半徑的大小關(guān)系,來判斷出點P與⊙O的位置關(guān)系即可.
解答:∵點A的坐標(biāo)為(4,2),
∴由勾股定理得,點A到圓心O的距離AO==2,
∵⊙O的半徑為4,而4<2
即d>r,
∴點A在圓外,
故選B.
點評:本題考查了點與圓的位置關(guān)系,判斷的依據(jù)為當(dāng)d>r時,點在圓外;當(dāng)d=r時,點在圓上;當(dāng)d<r時,點在圓內(nèi).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

附加題:在△ABC中,∠BAC=90°,AB=AC=2
2
,⊙A的半徑為1,如圖所示.若點O在精英家教網(wǎng)BC上運動(與點B、C不重合),設(shè)BO=x,△AOC的面積為y.
(1)求關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(2)以點O為圓心,BO長為半徑作⊙O,求當(dāng)⊙O與⊙A相外切時,△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠BAC=90°,AB=AC=2
2
,⊙A的半徑為1,如圖所示.若點O在BC邊上運動(與精英家教網(wǎng)點B、C不重合),設(shè)BO=x,△AOC的面積為y.
(1)求⊙A與△ABC重疊部分圖形的面積(結(jié)果用π的式子表示);
(2)求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍;
(3)以點O為圓心,BO長為半徑作圓,求當(dāng)⊙O與⊙A外切時,△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)已知,紙片⊙O的半徑為2,如圖1,沿弦AB折疊操作.
(1)①折疊后的
AB
所在圓的圓心為O′時,求O′A的長度;
     ②如圖2,當(dāng)折疊后的
AB
經(jīng)過圓心為O時,求
AOB
的長度;
     ③如圖3,當(dāng)弦AB=2時,求圓心O到弦AB的距離;
(2)在圖1中,再將紙片⊙O沿弦CD折疊操作.
①如圖4,當(dāng)AB∥CD,折疊后的
AB
CD
所在圓外切于點P時,設(shè)點O到弦AB、CD的距離之和為d,求d的值;
②如圖5,當(dāng)AB與CD不平行,折疊后的
AB
CD
所在圓外切于點P時,設(shè)點M為AB的中點,點N為CD的中點,試探究四邊形OMPN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•江西)已知,紙片⊙O的半徑為2,如圖1,沿弦AB折疊操作.
(1)如圖2,當(dāng)折疊后的
AB
經(jīng)過圓心O時,求
AB
的長;
(2)如圖3,當(dāng)弦AB=2時,求折疊后
AB
所在圓的圓心O′到弦AB的距離;
(3)在圖1中,再將紙片⊙O沿弦CD折疊操作.
①如圖4,當(dāng)AB∥CD,折疊后的
CD
AB
所在圓外切于點P時,設(shè)點O到弦AB、CD的距離之和為d,求d的值;
②如圖5,當(dāng)AB與CD不平行,折疊后的
CD
AB
所在圓外切于點P時,設(shè)點M為AB的中點,點N為CD的中點.試探究四邊形OMPN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有一圓柱體高為8cm,底面圓的半徑為2cm,如圖所示,在AA1上的點Q處有一只蜘蛛,QA1=3cm,在BB1上的點P處有一只蒼蠅,PB=2cm.
(1)蜘蛛要從點Q處沿圓柱體表面去吃點P處的蒼蠅,請在圖中大致畫出蜘蛛爬行的最短路徑;
(2)求蜘蛛爬行的最短路徑長.(π取3)

查看答案和解析>>

同步練習(xí)冊答案