如圖,直線AB與坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,且OA、OB的長分別為方程x2-6x+8=0的兩個(gè)根(OA<OB),點(diǎn)C在y軸上,且OA︰AC=2︰5,直線CD垂直于直線AB于點(diǎn)P,交x軸于點(diǎn)D.
(1)求出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請求出直線CD的解析式.
(3)若點(diǎn)M為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)M,使以點(diǎn)B、P、D、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(1)A(0,2),B(-4,0);(2)直線CD的解析式:yCD=-2x+7;(3)存在,P1(-5.5 , 3),P2(9.5 , 3),P3(-2.5 , -3).
【解析】
試題分析:(1)根據(jù)一元二次方程的解法得出OA=2,OB=4,即可得出的A,B的坐標(biāo);
(2)首先利用角之間的關(guān)系得出△BOA∽△COD,即可得出D點(diǎn)的坐標(biāo),再利用待定系數(shù)法求一次函數(shù)解析式;
(3)先求出P點(diǎn)坐標(biāo)(2,3),再根據(jù)平行四邊形的性質(zhì),當(dāng)PM=BD,M可在第一象限或第二象限,以及BM=PD時(shí)M在第三象限分別分析直接得出答案.
試題解析:(1)∵
∴
∵OA、OB為方程的兩個(gè)根,且OA<OB
∴OA=2,OB=4,
∴ A(0,2),B(-4,0),
(2)∵OA:AC=2:5
∴ AC=5
∴OC=OA+AC=2+5=7
∴ C(0,7),
∵∠BAO=∠CAP,∠CPB=∠BOA=90O
∴∠PBD=∠OCD
∵∠ BOA=∠COD=90O
∴△BOA∽△COD
∴=
∴ OD===,
∴D(,0)
設(shè)直線CD的解析式為
把x=0,y=7;x=,y=0分別代入得:
∴,
∴yCD=-2x+7,
(3)存在,P1(-5.5,3),P2(9.5,3),P3(-2.5,-3).
考點(diǎn):一次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
m |
x |
m |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年四川省內(nèi)江市九年級第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,直線AB分別與兩坐標(biāo)軸交于點(diǎn)A(4,0).B(0,8),點(diǎn)C的坐標(biāo)為(2,0).
(1)求直線AB的解析式;
(2)在線段AB上有一動(dòng)點(diǎn)P.
①過點(diǎn)P分別作x,y軸的垂線,垂足分別為點(diǎn)E,F,若矩形OEPF的面積為6,求點(diǎn)P的坐標(biāo).
②連結(jié)CP,是否存在點(diǎn)P,使與相似,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com